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Major Professor: David Campbell, Ph.D., Professor of Physics

ABSTRACT

Monolayers and heterostructures of two-dimensional (2D) electronic materials with

spin-orbit interactions offer the promise of observing many novel physical effects.

While theoretical predictions of 2D layered materials based on density functional

theory (DFT) are many, the DFT approach is limited to small simulation sizes (sev-

eral nanometers), and thus inhomogeneous strain and boundary effects that are often

observed experimentally cannot be simulated within a reasonable time. The aim of

this thesis is (i) to study effects of strain on 2D materials beyond graphene us-

ing first-principles and tight-binding methods and (ii) to investigate the effects of

cuts–“kirigami”– on 2D materials using molecular dynamics and machine learning

approach.

The first half of this thesis focuses on the effects of strain on manipulating spin

and valley degrees of freedom for two classes of 2D materials–monochalcogenide

and lead chalcogenide monolayers–using DFT. A tight-binding (TB) approach is

developed to describe the electronic changes in lead chalcogenide monolayers due to

strains that often persist in real devices. The strain-dependent TB model allows one

to establish a relationship between the Rashba field and the out-of-plane strain or

vii



electric polarization from a microscopic view, a connection that is not well understood

in the ferroelectric Rashba materials. This framework connecting strain fields and

electronic changes is important to overcome the size and computational limitations

associated with DFT.

The second part of the thesis focuses on defect engineering and design of 2D

materials via the “kirigami” technique of introducing different patterns of cuts. A

machine learning (ML) approach is presented to provide physical insights and an

effective model to describe the physical system. We demonstrate that a machine

learning model based on a convolutional neural network is able to find the optimal

design from a training data set that is much smaller than the design space.
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indicates the Pnma-ML structure reconfiguration such that the puck-

ering (armchair) direction d̂puck becomes ŷ instead of x̂. (II) indicates
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sition. Under small strain, the direct transition at Vx is only visible

under incident x-polarized light, while the Vy transition is visible un-

der both incident y and x (with a small coupling) polarized light. . . 44

4.1 (a) Schematic top and side view of PbX and the corresponding Bril-

louin zone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Band energy of 2D free-electron gas in without any external field, with

out-of-plane magnetic field, and with out-of-plane electric field. . . . 56

4.3 Rashba splitting and spin-polarization. . . . . . . . . . . . . . . . . . 57

xv



5.1 (a) Structural visualizations of buckled PbX monolayer. Buckling an-

gle θ = 0 (β = 0) for planar structure. Blue and orange arrows indi-

cate vectors connecting Pb and its first and second nearest neighbors,

respectively and (b) the corresponding Brillouin zone. . . . . . . . . . 73

5.2 Potential energy surface of PbS as a function of distance dz with (a)

fixed buckled lattice parameters and (b) fixed planar lattice parameters. 75

5.3 Band structure of monolayer PbS in planar (a) and buckled struc-

ture (b) along the high symmetry lines of Brillouin zone. Green lines

indicate Fermi energy. There is no splitting in the planar structure

because of inversion symmetry. In contrast, there is no mirror-plane

in z for buckled structure resulting broken inversion symmetry, and

this leads to band-splitting. The calculated Rashba parameter at Γ

(M) gives rise to a larger energy splitting between bands than other

giant Rashba materials. Rashba-like dispersion at Γ (c) and M point

(d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4 Rashba-like dispersion at Γ (a) and M point (b) of buckled PbX mono-

layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.5 Projected density of states (PDOS) of Pb and S atoms. Note that the

Pb-d contribution is too small to be seen on this figure . . . . . . . . 80

5.6 Band structures of buckled PbS, PbSe and PbTe with spin-orbit in-

teraction included. Fermi energy is set to be zero. All buckled lead

chalcogenides have large Rashba splitting in the conduction band. In

the highest valence bands, however, the Rashba splitting is smaller for

compounds containing lighter chalcogen species. . . . . . . . . . . . 81

xvi



5.7 Evolution of band structure around Γ (a) and M (b) with application

of biaxial strains. Energy is subtracted by energy at Γ (M) for compar-

ative purposes. (b) λ scaled by its unstrained value λ0 as a function of

sin 2θ. λ increases with increasing buckling angle, which is consistent

with tight-binding analysis. (c) Relative changes in buckling angle θ

and bond distance d as a function of biaxial strain ε. . . . . . . . . . 83

5.8 (a) Band plots of the first (C1II) and second lowest (C1I) conduction

band near the Γ and M point. Clockwise (counter clockwise) spin

textures are represented by the yellow (green) arrows. Near the band

crossing (inner Dirac cone), the upper and lower band have opposing

helical spin texture similar to the Rashba spin texture. (b) Corre-

sponding schematic orbital spin texture of Pb atom at M point. The

radial pr and tangential pt have opposite spin orientation, and they

cancel each other. Spin helicity is flipped after passing through the

Dirac point while the orbital compositions are still the same. . . . . 85

5.9 Two dimensional plot of spin polarizations near M . The color plot

shows the projection of spin along z direction. Clearly, the out-of-

plane spin components are small. The direction of spin polarizations

is reversed when the buckling direction is reversed. . . . . . . . . . . 87

6.1 (a) Schematic top and side views of a buckled AB monolayer. (b)

Undeformed and deformed Brillouin zone as the monolayer is stretched

in the x and y direction. . . . . . . . . . . . . . . . . . . . . . . . . . 91

xvii



6.2 Schematic changes in the Rashba dispersions due to (a) in-plane strains

and (b) out-of-plane strains. The linear Rashba dispersions at the

M for unstrained systems are colored blue. Under positive in-plane

strains, the Rashba points shift closer to Γ and the strength of Rashba

parameters decrease (smaller slope) with increasing strains. On the

other hand, under out-of-plane strain, the strength of Rashba param-

eters increases with increasing uniaxial out-of-plane strain while the

Rashba points do not shift. . . . . . . . . . . . . . . . . . . . . . . . 96

6.3 (a) Representative band structures of strained PbS along symmetry

points X-Γ-Y -M -X and (b) close to M . (c) Relative change in the

Rashba parameters obtained from DFT calculations as a function of

strain ε for PbS, PbSe, and PbTe. . . . . . . . . . . . . . . . . . . . . 101

6.4 Energy spin-splitting of PbS for isotropic strains of (a) ε = 0.00 and

(b) ε = 0.10. It can be seen that the M points are originally located at

|kx,y| = π/a0 and shifted closer to the center under a strain of ε = 0.10.102

6.5 (a) Out-of-plane polarization ∆ ~Pz as a function of out-of-plane strain

εzz. (b) Linear relationship between λ and εzz which is consistent with

TB predictions. (c) Rashba parameter λ as a function of ∆ ~Pz. All

data points are obtained from the DFT calculations. . . . . . . . . . 104

6.6 From the DFT results we found that the ionic plus core electronic and

the electronic (by Berry phase calculation) contributions are propor-

tional to the distance between Pb and X (X=S, Se) in the z direction. 105

xviii



7.1 (Color online) Schematic of the MoS2 kirigami, with key geometric

parameters labeled. The kirigami is deformed via tensile displacement

loading that is applied at the two ends in the direction indicated by

the arrows. Top image represents a top view of the kirigami. . . . . . 110

7.2 (Color online) Stress-strain curves of AC MoS2 kirigami, where the

2D stress was calculated as the stress σ times thickness t. (a) Stress-

strain curve for constant α = 0.0866, β = 0.0375. (b) Stress-strain

curve for AC kirigami keeping β = 0.0375 constant and varying α.

Note the brittle fracture of the pristine MoS2 nanoribbon. In general,

the strain in region III increases substantially for α > 0. . . . . . . . . 111

7.3 (Color online) Stress-strain curve of a monolayer MoS2 sheet under

tensile loading along the armchair direction using two different SW

potentials. The newer SW potential [1] matches better with the trends

observed in DFT calculations [2] than the first SW potential of Jiang

et al. [3]. No phase transition is observed with the more recent SW

potential of Jiang [1]. For SW13, breaking of bonds between the Mo

and S layers occur at ε ∼0.2 and ε ∼0.3 as observed in Ref. [4] . . . . 112

7.4 Side and top views of kirigami during deformation. . . . . . . . . . . 114

7.5 Von Mises stress prior to the fracture at a tensile strain of 62% in

(a) Mo layer and (b) top S layer of kirigami in Fig. 7.4. We plot the

stress distribution layer by layer to give a clear picture of the stress

distribution. The von Mises stress were scaled between 0 and 1. . . . 115

xix



7.6 (Color online) (a) Influence of α on yield and fracture strain for zigzag

(ZZ) and armchair (AC) MoS2 kirigami, with constant β = 0.0375 for

AC and constant β = 0.0417 for ZZ. (b) Influence of α on yield and

fracture stress for zigzag (ZZ) and armchair (AC) MoS2 kirigami. Data

are normalized by MoS2 nanoribbon results with the same width. . . 117

7.7 (Color online) Influence of β on the kirigami yield and fracture strain

(a) and stress (b), with constant α = 0.0186 for AC and constant

α = 0.0157 for ZZ. Data are normalized by MoS2 nanoribbon results

with the same width. . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.8 2D Young’s modulus E2D of armchair (AC) and zigzag (ZZ) kirigami,

pristine nanoribbons (PNR), and sheets. Inset shows E2D of kirigami

normalized by PNRs. The fitting dashed line (colored blue) is given

as a guide to the eye. . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8.1 Schematic diagrams of graphene sheet and rectangular graphene unit

cells. In this system, there are 3 × 5 grids (colored red) where a

cut may present or absent. Each grid consist of 10 × 16 rectangular

graphene unit cells (colored green) and each rectangular graphene unit

cell consists of four carbon atoms . . . . . . . . . . . . . . . . . . . . 126

8.2 (a) Stress-strain plot of three representative“typical” kirigami cuts

and the corresponding structures. . . . . . . . . . . . . . . . . . . . 129

8.3 Yield stress as a function of yield strain for different configurations.

Data are colored based on their cut density. . . . . . . . . . . . . . . 130

8.4 Linear plot of true values (test data) as a function of predicted value

for (a) yield strain and (b) yield stress. The red line represents y = x

line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

xx



8.5 (a) Learned first order parameter βi plotted in 2D arrays to match

with the real space positions for yield strain. Here (1,1) is β1, (1, 2) is

β2 and so on. (b) Learned matrix second order parameters (coupling

interactions) βij for yield strain. . . . . . . . . . . . . . . . . . . . . . 133

8.6 (a) Learned first order parameter βi plotted in 2D arrays to match

with the real space positions for yield stress. Here (1,1) is β1, (1, 2) is

β2 and so on. (b) Learned matrix second order parameters (coupling

interactions) βij for yield stress. . . . . . . . . . . . . . . . . . . . . . 134

8.7 R2 and RMSE for yield strain (a, b) and yield stress (c, d) as a function

of number of neurons for NN or size of fully-connected layer for CNN

for different number of grids. In general, an increasing number of

neurons increases the model accuracy. It can be seen that the CNN

models outperform the NN models. . . . . . . . . . . . . . . . . . . . 137

8.8 Plot of true values (test dataset) as a function of predicted value for

(a) yield strain and (b) yield stress. Here, the CNN-f16-f32-f64-h64

model was used. The red line represents y = x line. . . . . . . . . . . 139

8.9 Schematic of the neural network search algorithm. . . . . . . . . . . . 140

8.10 Average yield strains of the top 100 performers as a function of gen-

erations for kirigami with allowed cuts of (a) 3× 5 and (b) 5× 5. . . 142

8.11 (a) Visualization of top five performers of kirigami with 5× 5 allowed

cuts in each generation. After the ninth generation, the top three

performers remain constant. (b) A comparison between the top per-

forming configurations found by the ML and the typical kirigami con-

figurations with centering cuts. Note that the kirigami visualizations

are not scaled to the real physical dimensions for clarity. . . . . . . . 143

xxi



8.12 Top and side views of three representative kirigamis. . . . . . . . . . 144

8.13 Side view of graphene kirigami structure I and II during stretching.

It can be seen that the kirigamis buckled in the out-of-plane direction. 145

xxii



List of Abbreviations and Symbols

AC . . . . armchair

CNN . . convolutional neural network

DFT . . density functional theory

DL . . . . deep learning

FERSC ferroelectric Rashba semiconductor

MD . . . molecular dynamics

ML . . . . machine learning

NN . . . . neural network

OLS . . . ordinary least squares

SOI . . . spin-orbit interaction

TMD . . transitional metal dichalcogenides

ZZ . . . . zigzag

xxiii



1

Chapter 1

Introduction

1.1 Two-dimensional Age

1.1.1 A Brief History of 2D Materials

In 1959, Nobel Laureate physicist Richard Feynman in his famous lecture “There’s

Plenty of Room at the Bottom” envisioned a future where the entire Encyclopaedia

Brittanica could be written on the head of a pin [5]. Current hard drives can store

information at around 1 Terabit/inch2 and since the size of Encyclopaedia Brittanica

is around 4 Gigabytes, we have indeed reached what Feynman envisioned where

thousands of Encyclopedias can be carried around on a portable hard drive the size

of a library card. His proposals and ideas have inspired many generations of scientists

and engineers, and progress is still being made in miniaturizing fast computers and

information storage.

In 2004, Novosolev, Geim, and colleagues first demonstrated the isolation of a

single atom thick sheet of carbon, known as graphene [6]. They successfully iso-

lated graphene by mechanically exfoliating thin layers of graphite with scotch tape.

Graphene is one atomic layer of carbons arranged in a hexagonal structure. It is

a metal (zero-gap) and the most interesting aspect of graphene that generated sig-

nificant attention from a diverse spectrum of scientists, from condensed matter to
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Figure 1.1: A schematic cycle of study of 2D materials: from fundamental studies,
applications, to discoveries of new 2D materials.

high energy physicists, is its chiral Dirac fermions. The linear dispersion of elec-

trons in graphene led to many ground breaking discoveries, such as the Quantum

Hall Effect [7, 8], Klein tunneling [9], and strain-induced pseudomagnetic fields and

non-integer Landau level spacing [10].

Soon after, several other 2D materials, such as transition metal dichalcogenides

(TMDs), were successfully isolated using similar mechanical exfoliation techniques [11].

The behavior of these materials in monolayer (single layer) form is different from their

3D bulk counterparts. One of the most intriguing findings in TMD monolayers (such

as MoS2) was the selective valley polarization [12, 13] 1. Similar to spin, the val-

ley degree of freedom can be used to store information; this mechanism, known as

valleytronics, has been proposed for developing valley-based devices. Other novel

1Monolayers or single layers of TMDs do not imply one atomic thin layer. Specifically, TMDs
like MoS2 have a transition metal atom sandwiched between two chalcogen atoms in one unit cell.
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technological applications have also been demonstrated, ranging from applications

of nanopores on 2D materials for DNA sequencing [14] to quantum computers [15].

The isolation of many layered materials was not only a scientific success to make

more room at the bottom, it also opened the door for studying low-dimensional sys-

tems and many other phenomenon that are difficult to observe in 3D systems, and

for developing novel nanoscale devices.

1.1.2 Heterostructures and Defects Engineering

The family of 2D crystals has expanded greatly thanks to recent advances in chemical

vapor deposition (CVD) and exfoliation techniques [16, 17, 18]. In the bulk form,

the layers in many of these 2D materials are often held together by van der Waals

forces [19]. Another great opportunity is that these layered materials can be stacked

in both vertical and lateral directions, illustrated in fig. 1.1. Many of these combined

materials, known as heterostructures, are not found in nature.

Creating a material with new functionalities or new behaviors can be achieved

without combining materials with distinct properties. Different stacking strategies,

such as twisting or shifting (which often induce local strains), can be used to break

symmetries. Symmetries and conservation laws are particularly important concepts

to describe physical phenomena in many systems. For instance, controlling the num-

ber of layers or choosing a specific stacking configuration can be used to break the

inversion symmetry of few layered materials. This strategy has been utilized to

control spin and valley degree of freedom in few layered MoS2 [20, 21]. And most re-

cently it has been shown experimentally that unconventional superconductivity can

be achieved in twisted bilayer graphene systems [22]. Heterostructures provide the

opportunity to study new physics and to generate materials with a great variety of
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properties and potential applications.

In addition to stacking, adding defects or removing atoms in 2D materials is an

effective strategy to alter their mechanical, electronic, or optical properties due to

their high surface area. This method is often achieved by patterning the materials

with geometrical cuts (antidot lattices) [23, 24, 25] and defects [26]. Electronically,

a graphene nanoribbon with zigzag edges is a semiconductor (non-zero gap) [27]. In

mechanics, arrays of cuts, known as kirigami cuts, allow graphene to stretch more

than double that of a pristine, uncut graphene sheet [28]. 2D platforms are indeed

a fascinating “playground” for scientists to explore and there are many aspects of

physics yet to be explored by expanding this 2D playground. The ability to reduce

the thickness of materials to their physical limits and manipulating them at the

quantum level with a high precision are among the most important recent scientific

advancements.

1.2 Further discovery

In the 10 years since the discovery of graphene, most studies of 2D materials have

focused on 2D materials with hexagonal structure, such as graphene and TMDs

(MoS2, MoSe2, WS2, etc.). Recently, monolayer black phosphorus (phosphorene)

with orthorhombic structure and a moderate band gap (in between TMDCs and

graphene) has gained significant attention [29]. Phosphorene belongs to the D18
2h

point group which has a lower symmetry compared to graphene, which has D4
6h

point group symmetry. Due to the orthorhombic structure and reduced symmetry,

phosphorene has highly anisotropic excitonic [30] and mechanical properties [31].

Synthesizing materials is often costly and finding new materials often requires

significant trial and error. Simulations via first-principles methods based on density
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Figure 1.2: The emergence of new classes of 2D materials.

functional theory (DFT) have become very popular for predicting stable phases, band

structures, and other important properties. This ab initio approach is powerful for

discovering new 2D materials because it does not rely on the available experimental

data of the proposed materials. First-principles calculations were used to discover

several new classes of 2D materials beyond graphene, including monochalcogenide

monolayers (SnS, GeSe, etc.) with tunable ferroelectric and valleytronic proper-

ties [32]. The monochalcogenide monolayer has a puckered structure similar to phos-

phorene, but with two types of atoms.

Most studies of 2D materials have focused on materials with relatively weak spin-

orbit interactions (SOI). SOI interactions add an additional degree of freedom which

often brings a much richer physics. It has been proposed that combining topological

insulators or semiconductors with Rashba interactions coupled with superconductors
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may host Majorana fermions, which are the building blocks for topological quantum

computers [33, 34]. This motivated some of the work in this thesis, including studying

other possible 2D materials consisting of heavy elements. Doing so led to the addition

of a new class of 2D buckled ferroelectric Rashba semiconductors (FERSC) to the

family of 2D materials [35, 36]. Figure 1.2 shows the ongoing expansions of discovered

2D layered materials. Figure 1.2 does not include all discovered materials to date,

such as phosphorene [29], buckled monolayers with one type of atom (Xene) [37] and

very recently discovered 2D magnetic materials (e.g CrI3) [38].

1.3 Multiscale Approach and Limitations

While DFT is widely used to study the electronic properties of 2D materials, it is

computationally expensive thus not practical to study large systems. Within the

DFT approach, a time-independent Schrödinger equation of non-interacting many

single electrons are solved iteratively [39, 40, 41]. Solving this so-called Kohn-Sham

equation requires diagonalizing a matrix of the size of the number of electrons. The

computational time to find the electronic ground state is roughly O(N3
e ) where Ne is

the number of electrons. In DFT, finding the electronic ground states is a necessary

step before calculating the forces acting on nuclei, which are then used for finding

the relaxed structure. This makes DFT very expensive once the simulated super-

cells reach the size of a nanometer or larger (hundreds of atoms). This limits DFT

simulations to inhomogeneous strains over a small region only.

Classical molecular dynamics (MD) is another approach to find equilibrium con-

figurations of a material or to simulate a material under external forces [42]. MD

solves newtonian equations of many atoms. Considering all interactions between

atoms, the time complexity of MD scales roughly as O(N2
a ), where Na is number
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properties that depend on quantum mechanical quantities, but cannot account for
many atoms. MD can simulate a much larger system, but TB has to be included for
calculating the electronic properties.

of atoms not electrons [42, 43].This gives MD a huge computational advantage over

DFT methods for studying structure. However, unlike DFT, MD relies on “effec-

tive” potentials which often are not available for many 2D materials. The effective

potentials are usually obtained by fitting the empirical potentials to fundamental

properties like phonon dispersion or elastic constants. Because MD is classical, and

thus does not explicitly account for electronic degrees of freedom, it cannot be used

to calculate electronic properties. In order to calculate electronic properties based

on atomic configurations, tight-binding (TB) approaches are often used.
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A TB model requires much less computing resources compared to DFT as TB

considers only a few bands (usually around the Fermi level) and it does not need to

perform self-consistent calculations to find the electronic ground state. TB describes

the electronic states of a solid by approximating the total wavefunction as a super-

position of localized orbitals centered at the atomic sites [39, 40]. TB models are

usually described by Slater-Koster determinant which requires the atomic positions

and the hopping parameters (neighbor interactions). Hopping parameters are usu-

ally obtained by fitting the band structure of a TB model to the DFT result. Since

MD gives atomic configurations, TB can be used to subsequently calculate electronic

properties. The length and time scales of DFT and MD methods are summarized in

fig. 1.3. The above-discussed limitations of MD and DFT motivated the development

of a TB model for lead chalcogenides monolayers, in addition to a continuum model

to describe electronic changes within a strain-dependent TB framework.

Another computational challenge arises in attempting to use MD to design nan-

odevices, or to find an optimal design for a material or structure that satisfies specific

performance metrics. Specifically, such a computational design process would require

many (likely millions) of MD simulations, which is impractical. For instance, suppose

a design problem was to optimally place vacancies (holes) on a 2D material to achieve

a specific physical property. If a 2D membrane were partitioned into Ngrid = Nx×Ny

grids, there are 2Ngrid ways to locate the holes. This means the exploration space

grows exponentially with system size, and clearly brute-force calculations would not

be practical with the current computing power. Recently, machine learning (ML)

has become a popular tool to describe physical systems [44, 45, 46]. The core idea

of ML is to build flexible and expressive models without knowing the physical mod-

els, relying from the data (patterns) instead. Several databases, such as Materials
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Project [47], Citrine Informatics, and many others [48], have been built as a platform

to store, organize, and analyze a vast amount of experimental and DFT data (hun-

dred thousands of compounds) for training ML models. However, to date, most ML

approaches have been used for predicting properties of 2D materials with different

atomic compositions and/or crystal symmetries [49, 50, 51], but very few for predict-

ing properties or to do inverse design based on structural and geometrical defects.

The last part of the thesis introduces ML approaches to approximate some unknown

target functions and use them as a search algorithm.

Using ML for inverse design is particularly valuable for research and industrial

purposes as the ML is able pre-screen the best performing designs in simulations with

very minimal development costs (few training data), and to use such information to

fabricate the materials. The ML method is universal and parameter-free, in a sense

that it can be used to design any material without any prior physical knowledge of

the system. As the ML method only needs data, it can be applied to experimental

work where the physical model is not known and cannot be simulated by MD or

other simulation methods.

1.4 Contributions of This Thesis

The main findings reported in this thesis are as follows. First, discoveries of new 2D

materials beyond graphene based on DFT. This includes orthorhombic monochalco-

genides and non-centrosymmetric ferroelectric monolayers with strong orbit interac-

tions. Next, the development of TB models and continuum approaches to model and

study electronic changes in monolayers in the presence of strains are shown. Finally,

it is shown how defects (e.g holes or cuts) can be used to modify properties of 2D

materials, and furthermore how ML approaches can be used to design 2D materials
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to achieve a specific target property. In more detail:

• Chapter 3 presents first-principles studies of newly discovered 2D materials.

The simulation results are based on DFT. Structural phases of tin sulfide

(SnS) and germanium selenide (GeSe) were studied, and it is demonstrated

how their puckering and electric dipole orientations can be switched through

the application of either stress or an electric field, which is essential for storing

information. Their band structure was also investigated, and it was found that

the two valleys located in two different principal axes of the Brillouin zones

can be excited selectively using linearly polarized light. By understanding the

selection rules, optical transitions can be used to address bits of information.

The results are important, as maintaining ferroelectricity in atomically thin

films remains a challenge due to depolarization and technologically important

for potential devices.

• As DFT is limited to small system sizes, Chapter 4 introduces TB models for

two atoms with strong-spin orbit interaction arranged in a square lattice. The-

oretical predictions are developed on the emergence of Rashba (Dirac) points as

a result of symmetry breaking and strong spin orbit interaction. Finally, the ef-

fects of external electro magnetic fields on this material are investigated. Some

consequences include Dirac shift in momentum space as well as the occurrence

of Landau levels.

• Chapter 5 proposes a new class of ferroelectric Rashba materials. DFT calcu-

lations were used to show that lead chalcogenide monolayers PbX (X=S, Se,

Te) have buckled (noncentrosymmetric) structures which are energetically more

stable than the planar. The heavy lead atom together with non-centrosymmetric
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structure results in Rashba-Dirac cone with a helical Rasba type spin-texture.

Further, it was found that the material is ferroelectric and the spin-texture can

be reversed by switching the electric polarization or buckling direction. A uni-

fying framework based on tight binding (TB) formulations was then developed,

which was confirmed by DFT simulation results, and which is applicable for

generic buckled free-standing square 2D materials MX (M=Pb, Sn; X=S, Se,

Te). In particular, it is addressed how the strength of SOI and the degree of

buckling (inversion symmetry breaking term) determine the bands structure,

spin splitting, and orbital-spin texture. This understanding enables the ma-

nipulation of the spins and Dirac cones via mechanical strains. Moreover, it

was investigated how spin chirality couples to orbital texture, a topic that is

very new in the studies of ferroelectric Rashba semiconductors (FERSC).

• As a follow-up study, it was investigated how strains modify electronic and spin

states in lead chalcogenides monolayers. In Chapter 6, a TB theory was de-

veloped using continuum mechanics, validated by DFT calculations, to predict

strain-dependent changes in the spin and electronic properties of ferroelectric

Rashba lead chalcogenides PbX (X=S, Se, Te). The strain-dependent TB mode

enables finding a relationship between the Rashba field and the out-of-plane

strain or electric polarization from a microscopic view, a connection that is not

well understood in the ferroelectric Rashba materials. This work is important

to overcome the size and computational limitations associated with DFT. The

developed strain-dependent TB model can be used in conjunction with a clas-

sical atomistic simulation (e.g MD) to calculate the effect of inhomogeneous

strain due to thermal effects, substrates, defects etc., on the Rashba parame-

ter over the large spatial regions that are relevant to experiments. Third, the
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approach goes beyond previous TB studies by including angular effects (bond

orientation) and lattice deformation effects of strain on hopping parameters,

which are often ignored in many studies. It is found that the strains induce

gauge fields in the low-order energy Hamiltonian near the symmetry point.

The fields shifts the Rashba point and modify the Rashba parameter, which is

equivalent to applications of in-plane magnetic fields by minimal coupling sub-

stitution. The out-of-plane strain, which is roughly proportional to the electric

polarization, is also shown to modify the Rashba parameter. In particular the

strain and electrical control of the Rashba effect is of practical interest because

it allows the manipulation of spin states using electric fields (or strains) rather

than magnetic fields.

• The last two chapters focus on studies of defects engineering in 2D materi-

als. In Chapter 7, it is investigated how cuts (holes) alter the mechanical

properties of MoS2 and graphene. The results of classical molecular dynamics

simulations are reported which focus on studying the mechanical properties of

MoS2 kirigami. The key finding is significant enhancements in tensile yield

and fracture strains as compared to pristine MoS2 nanoribbons, particularly

for zigzag MoS2 that enable yield strain increases by factors of up to four and

fracture strain enhancements by factors of up to six. These results in conjunc-

tion with recent results on graphene suggest that the kirigami approach may be

a generally useful one for enhancing the ductility of two-dimensional materials.

• Lastly, a ML approach to design 2D materials is introduced. The ML mod-

els such as convolutional neural networks (CNN) and fully-connected neural

networks (NN) are first used to approximate the objective functions such as

yield strain and yield stress in the context of supervised learning. This work
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is the first demonstration of the applicability of ML to predict stretchability

in graphene kirigami. Having found the appropriate ML model to predict tar-

geted function, the CNN is then used as a search algorithm. The objective

is to maximize stretchability under certain constraints, such as number of al-

lowed cuts. It is demonstrated that the CNN search is able to find the optimal

solutions with only 1000 training data points in a large design space of roughy

4,000,000.
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Chapter 2

Computational Methods

2.1 Multiscale Modeling Approaches and Their Limitations

In this chapter we give an overview of different computational approaches employed

in this thesis, indicating their advantages and their limitations. In the first part

of this chapter we provide a basic understanding of some of the advantages and

limitations of the density functional theory (DFT) and molecular dynamics (MD)

approaches we use to study the properties of materials. We shall discuss and derive

the basic concepts and algorithms that are used in DFT and MD methods. In the

second part of this chapter, we will discuss the “machine learning” approaches we

will use to further explore how to design materials with specific features. Here we

provide basic aspects of neural network models, focusing on convolutional neural

networks.

2.1.1 Density Functional Theory

Properties of materials are governed by quantum interactions among electrons and

ions. For many-electron systems, solving the full N interacting electron problem is

not feasible with the current computing capabilities. For this reason, several approx-

imations have been developed to tackle this problem. Today ab initio calculations

based on density functional theory (DFT) are the most commonly used method to
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simulate and calculate properties of a material. DFT is a variational approach for

solving many-electron system by finding the ground-state electron density instead

of the electronic wave functions. The early ideas were developed by Thomas [52],

Fermi [53], and Dirac [54] and later by Hohenberg, Kohn and Sham [55, 56].

The Hamiltonian of a solid consisting electrons and ions can be described by

H =
∑
i

~2

2me

∇2
ri

+−1

2

∑
i 6=j
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|ri − rj|
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2
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ZIe
2

|Ri − ri|
, (2.3)

where me, r, e, are the mass, the position, and the electronic charge of an electron,

respectively. M , R and Z are the mass, the position, and the valence charge of an ion,

respectively. The first and the third terms are the total kinetic contributions from

electrons and ions, respectively. The second and the fourth terms are the electrostatic

potential energy between the electrons only and the ions only, respectively. The last

term is the electrostatic potential energy between the electrons and the ions. The first

approximation is to assume the solid to be a perfect crystal (homogenous) so that by

periodic boundary conditions we can reduce the N ∼ 1023 atoms in a real material

to the number of atoms in the repeating unit cell. Current quantum mechanical

calculations (e.g. DFT) can solve systems of sizes up to a few nanometers (around

hundreds of atoms) within reasonable computational times.

The next approximation is to treat the ions as static particles, as the electron mass

is much smaller than the ionic mass. Within this approximation, the electrons are

moving at a different time scale compared to the ions. This approximation is known
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as the Born-Oppenheimer or adiabatic approximation. The Hamiltonian becomes

simpler, as now it contains kinetic energy of electrons and the interaction between

electrons and the effective potential, and the potential experienced by the electrons

due to the ions.

2.1.1.1 Hohenberg and Kohn Theorem

Hohenberg, Kohn, and Sham further developed a variational approach that became

the theoretical basis of the modern DFT [55, 56]. Hohenberg and Kohn showed that

the external potential v(r) is a unique functional of the electron density n(r), where

the n(r) is given by

n(r) = N

∫
Ψ∗(r, r2, . . . rN)Ψ(r, r2, . . . rN)dr2 . . . drN . (2.4)

Let H and H ′ be the two Hamiltonians and Ψ and Ψ′ be the ground state wavefunc-

tions, respectively. Suppose that v(r) and v′(r) are the two external potentials that

lead to the electronic ground state. The ground state energies E and E ′ are given

by

E =〈Ψ|H|Ψ〉

E ′ =〈Ψ′|H ′|Ψ′〉. (2.5)

Then by the variational principle,

E ′ < 〈Ψ|H ′|Ψ〉 =〈Ψ|H − v + v′|Ψ〉

=E + 〈Ψ|v′ − v|Ψ〉, (2.6)
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and similarly,

E < 〈Ψ′|H|Ψ′〉 =〈Ψ′|H ′ − v′ + v|Ψ′〉

=E ′ + 〈Ψ′|v − v′|Ψ′〉. (2.7)

Adding Eq. 2.6 and Eq. 2.7, we obtain

E + E ′ < E + E ′ + 〈Ψ′|v − v′|Ψ′〉+ 〈Ψ|v′ − v|Ψ〉 (2.8)

Since we have assumed that both H and H ′ have the same ground state charge

density then

〈Ψ1|v′ − v|Ψ1〉 = 〈Ψ′|v′ − v|Ψ′〉 =

∫
n(r)[v′(r)− v(r)]dr, (2.9)

and we obtain E+E ′ < E+E ′ which is not correct. This proves by contradiction that

the assumption v and v′ are different is incorrect. Thus the wavefunction must be a

unique functional of charge density since there is one-to-one correspondence between

the ground state wavefunction and the external potential. Now we can write Eq. 2.3

as

H = F [n(r)] +

∫
v(r)n(r)dr, (2.10)

where F contains the kinetic term and the electron-electron potential energy, and

the second term contains the interaction between the electrons and the ions. The

last term is not difficult to calculate. In the modern DFT packages, pseudopotentials

are used to calculate the Coulomb interactions between valence electrons and ions

and core electrons. Describing in detail the theoretical basis for the development

of pseudopotentials and exchange correlations is beyond the scope of this thesis.
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Interested readers are encouraged to read Refs. [39, 40].

2.1.1.2 Single-Particle Picture

To further approximate Eq. 2.1.1.1, we assume that the many-body wavefunctions

can be written as a set of many non-interacting single particle wavefunctions. The

charge density becomes

n(r) =
∑
i

|φi(r)|, (2.11)

φi(r) is the single particle wavefunction (or orbital). We can decompose F [n(r)] to

F [n(r)] = Ts[n(r)] + E[n(r)] + VXC[n(r)], (2.12)

where Ts[n(r)] is the kinetic term of the non-interacting electrons, E[n(r)] is the

classical electrostatic potential, and VXC[n(r)] is the exchange correlation energy,

which important to make F [n(r)] close to the exact function. We then can write

the Schrödinger equation in the single-particle picture, known as the Kohn-Sham

equation, as

[
− ~

2me

∇2
r + V (r) +

∫
e2n(r′)

|r− r′|
dr′ + VXC[n(r)]︸ ︷︷ ︸

veff

]
|φi(r)〉 = εi|φi(r)〉. (2.13)

The first term is the kinetic energy and the second term is the effective potential

experienced by an electron due other electrons, the ions, and the exchange potential.

These single-particles are known as Kohn-Sham orbitals and they are not really the

real electrons. Kohn-Sham equation has to be solved iteratively in a self-consistent

manner. Usually an initial guess of the density is chosen and then veff is calculated

and followed by solving the eigenvalue problem. The resulting eigenvectors are then
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used to calculate the next charge density. This iterative procedure is continued until

the charge density is converged.

2.1.1.3 Structural Optimization within Density Functional Theory

Due to vacuum or other interfacial effects, 2D monolayers often have structures that

are different from their bulk counterparts. To find stable phase of a material in 2D

(free-standing or on a substrate), the atomic positions and lattice vectors need to be

relaxed. Classically, the force acting on a particle at ri is given by the derivative of

the potential energy fi(R) = −∇RU(R)|R=ri . Quantum mechanically we expect

f(R) = −∇R〈E〉

= −∇R〈Ψ|H|Ψ〉. (2.14)

The Hellman-Feyman theorem states that for any perturbation λ we have

∂〈E〉
∂λ

= 〈∂Ψ

∂λ
|H|Ψ〉+ 〈Ψ|∂H

∂λ
|Ψ〉+ 〈Ψ|H|∂Ψ

∂λ
〉

= E
[
〈∂Ψ

∂λ
|Ψ〉+ 〈Ψ|∂Ψ

∂λ
〉+ 〈Ψ|∂H

∂λ
|Ψ〉

= E
∂

∂λ
〈Ψ|Ψ〉+ 〈Ψ|∂H

∂λ
|Ψ〉

= 〈Ψ|∂H
∂λ
|Ψ〉. (2.15)

This is what we needed to calculate Eq. 2.14. Here we have assumed that Ψ is

normalized and is an eigenstate of H. This means that once we find the electronic

ground state we can find the energy, and then calculating the forces acting on the

ions (and stresses) should be straight forward. In the modern DFT packages, the

relaxed structure can be found after iterations of electronic convergence followed by
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Figure 2.1: The schematic of coarse-graining from a full many-body approach to
DFT and from DFT to MD.

force and stress convergence. A force and stress tolerance are chosen based on a

desired accuracy; these choices may vary for different systems. The typical stress

tolerance is around 0.01 GPa and the typical force tolerance is around 0.01 eV/Å.

We want to note that finding the ground-state structure is a classical optimization

problem. Depending on how complex the system is, there could be multiple minima.

We can find the structural ground-state solution pretty quickly if we provide a good

starting configuration. This is the reason why using a structure obtained from the

bulk configuration is often helpful to get fast convergence to the relaxed structure in

the monolayer form.

2.1.2 Molecular Dynamics

Molecular Dynamics (MD) is a popular coarse-grained method to simulate the dy-

namics of solid materials as well as liquids. Unlike DFT, MD treats the nuclei and

their surrounding electrons as one entity. As explained in the earlier section, within

the Born-Oppenheimer approximation, nuclei is treated classically and for classical

MD the effect of electrons is approximated as a potential energy surface. This ap-
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proximation leads to treating the atoms with classical Newtonian mechanics. To

gain an accurate description of the physics, effective interatomic potentials need to

be developed. The interatomic potentials are appropriate for describing structural

and conformal changes but not for chemical reactions or calculating quantum me-

chanical properties (e.g. band structures). There are different ways to develop the

interatomic potentials; the details of these approaches are beyond the scope of this

thesis. In this section we will outline the basics of MD; more thorough details on

MD can be found in Refs. [42, 57].

The basic idea of MD is to evolve the position xi and the momentum pi of an

atom with Newtonian mechanics. In a system with N atoms, we have a set of 3N

second-order differential equations to solve. For each particle, the acceleration is

given by

d2ri(t)

dt2
=

1

mi

fi({r}, t) (2.16)

where mi is the mass of the ith atom and fi is the force acting on it. The force is

given by taking the gradient of the potential fi = −∇iU , where U is the external

potential experienced by the atom i. Often because of the locality of the interactions

(which diminish rapidly with increase in distance), only contributions from the local

neighbors are included in the calculations. This approximation reduces the compu-

tational cost from O(N2) (including all pairwise interactions) to O(N). However, we

still need to perform an O(N2) calculation to correctly find the neighboring atoms

for each atom. After finding the neighboring-list, O(N) calculations are carried out

to calculate the all the forces and loop over the number of cells (partitions).

It is clear that we need to solve Eq. 2.16 to find the updated x and p. Choosing the

right integration scheme to solve the dynamics numerically is critical. The simplest
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interaction scheme is the Euler method,

ri(t+ ∆t) = ri(t) + vi(t)∆t+
∆t2fi(t)

2mi

+O(∆t3)

vi(t+ ∆t) = vi(t) +
∆t fi(t)

mi

+O(∆t2), (2.17)

where vi = pi/mi is the velocity and ∆t is the time step. The time scale for

molecular vibrations is on the order of picoseconds (10−12s) and the typical time

step is usually chosen to be on the order of femtosecond (10−15s). The simple Euler

algorithm, however, is not ideal for MD because it is neither phase-space preserving

nor time-reversible. Hence, the most widely used algorithm for updating positions

and momentums in MD is Velocity-Verlet algorithm,

ri(t+ ∆t) = ri(t) + vti(t)∆t+
∆t2fi(t)

2mi

+O(∆t3)

vi(t+ ∆t) = vi(t) +
∆t(fi(t) + fi(t+ ∆t))

2mi

+O(∆t2). (2.18)

The Velocity-Verlet is algorithm favorable because it is stable and preserves the

volume in the phase-space.

The setup we described so far is known as micro-canonical ensemble (NVE en-

semble) where the number of atoms N , volume V , and energy E are fixed. In our

studies, we are interested in a system at a fixed temperature and thus a “thermostat”

is added to the simulation. For details, interested readers are referred to Ref. [42].

The schematic of coarse-graining from many-body to DFT then to MD is shown in

fig. 2.1.
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2.2 Machine Learning Methods

In the computational methods described above, both DFT and MD methods have

well-defined physical principles and assumptions that are used to model a complex

system. Recently, machine learning (ML) has become popular for analyzing complex

systems, from physical to social systems. The basis of learning from data, known

as the data-driven approach, is to have inputs and outputs to build a model, in

contrast to have inputs and a specified model to get the outputs. This is essential

because solutions based on some underlying physics principles are often not known for

very complex systems. Many modern ML models have been shown to be expressive

and efficient when it comes to predicting the output values (supervised learning) or

learning some structures in unlabeled data (unsupervised learning). An expressive

model means that the model can approximate any arbitrary function. ML models

in particular have become widely used across many systems because of the time and

space efficiencies for learning from a large amount of data, which is possible in part

due to the increase in computing power. Many modern ML algorithms scale well

with the size of the dataset because of the advances in highly optimized algorithms

implemented in parallel and GPU (Graphical Processing Unit) computing [58]. There

are many choices of ML techniques (linear model, support vector machine, random

forest, neural networks, k-nearest neighbors, etc.), and a given model is often chosen

based on problem specifics, the size of dataset, and the computing capabilities [58,

59, 60]. In this section we will start with giving an overview of theoretical basis

and how to train linear model which is the simplest supervised machine learning

model. We then further discuss the basic concepts of modern machine learning

techniques focusing on neural networks and convolutional neural networks, which

are particularly suitable for the problem of designing defects in 2D materials.
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2.2.1 Linear Model

The Hamiltonian (or any physical quantity) of many physical systems in nature can

be expanded as a power series. We then can approximate the function of interest f

as

f(xxx) = β0 +
∑
i

βixi +
∑
i≤j

βijxixj +
∑
i≤j≤k

βijkxixjxk + . . . . (2.19)

For m samples, we can write Eq. 8.3 as a linear function f(xxx) = X · βββ, where

X =


1 x

(1)
1 . . . x

(1)
n x

(1)
1 x

(1)
2 . . .

...
. . .

1 x
(m)
1 . . . x

(m)
n x

(m)
1 x

(m)
2 . . .

 , (2.20)

and βββT = (β0, β1, . . . , βn, β12, . . . ). Suppose that the length of βββ is p. In the machine

learning language this is equivalent to applying features transformation to the input

vectors [58, 59, 60]. To find βββ, mean squared difference between the predictions

ŷyy = f(xxx) and the true values yyy is minimized. This method is known as ordinary

least square regression method. We want to minimize a mean squared loss given by

L =||Xβββ − yyy||2

=(βββTXT − yyyT)(Xβββ − yyy)

=(βββTXTXTβββ − yyyTXβββ − βββTXTyyy + yyyTyyy)

=(βββTXTXTβββ − 2βββTXTyyy + yyyTyyy), (2.21)

where we have used the fact the transpose of a scalar is a scalar (yyyTXβββ)T = βββTXTyyy.

We can find the analytic expression of β by finding the minima of L which is by
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setting 0 = ∂L
∂βββ

. And after taking derivative we obtain,

0 =2XTXβββ − 2XTyyy

βββ =(XTX)−1XTyyy, (2.22)

where we have used the fact that ∂yyyTyyy
∂βββ

= 0. Note that here we assume that XTX

is invertible and this is the case when m > p. In the case where p > m there are

infinitely many solutions to βββ as XXX is not linearly independent. Another simple

approach to find the optimal values of βββ is to employ gradient descent optimization

method. We have obtained the derivative of the cost function from Eq. 2.22, the

coefficients βββ that can be updated iteratively as

βββt+1 = βββt − ηtXT(Xβββt − yyy), (2.23)

where ηt is a learning rate which controls how large is the step taken in the direction

of the gradient. Choice of ηt is crucial to achieve a fast convergence. A very small ηt

guarantees to find a local minima, but this would require many steps to reach a local

minima. A large η on the other hand might overshoot the solution and make the

algorithm become unstable. It can be seen that depending on the structure of the

cost function the ηt has to be changed adaptively and ηt, in principle, should have

different values in each direction. The optimal values of ηt for each component can

be found from the Hessian matrix (encodes the local curvature)

Hij =
∂2L
∂xi∂xj

. (2.24)
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Calculating a Hessian is computationally expensive especially in a high multidi-

mensional space [59, 60]. Adding stochasticity is also important to escape from

local minimas. Many stochastic optimizations techniques with adaptive learning

rate (e.g. Adaptive Gradient Algorithm (AdaGrad), Root Mean Square Propaga-

tion (RMSProp), ADAM) have been developed to get convergence within reasonable

time [58, 59, 60].

2.2.2 Neural Networks

Similar to linear model, a fully-connected Neural Network (NN) is a mathematical

function that maps input values to another output values. The underlying concept

of a NN was inspired by the biological network in animals brain (perceptron) [58].

The main advantage of NN and other deep learning methods is that they enable

feature extractions and transformations of complex representations (usually in a

vector representation) to much simpler ones without the need of hand-engineering

the transformations. To describe the NN computation, we will denote h as the

number of neurons in a hidden layer l. In each layer of a NN, the computation

(affine transformation) is given by

a(l+1) = g(W (l)a(l) + b(l)), (2.25)

where g is the non-linear activation function, a(l), b(l), W (l) are the activations, bias,

and the weights in a layer l. Deep neural networks are essentially a composition of

many affine transformations followed by non-linear transformations, which can be

written as

f(xxx) = g(L)A(L)g(L−1) · · · g(2)A(2)g(1)A(1)xxx, (2.26)
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Figure 2.2: A schematic of a typical CNN model. Each convolutional layer is usually
followed by max pooling layers, and finally fully-connected layers.

where Al is the affine transformation and L is the number of layers.

There are several choices of non-linear activation functions. The most common

are the sigmoid function g(z) = 1
1+ez

, the hyperbolic tangent g(z) = tanh(z), and

rectified linear units (ReLU) g(z) = max(0, z) [58, 60]. Training deep networks is

often difficult as the information needs to be transmitted through many layers. This

problem is known as the vanishing or exploding gradient problem. ReLU has become

the most popular activation function for training deep networks, because unlike the

sigmoid function, the gradient of ReLU function does not vanish at large z.

Next we will discuss the basic architecture of convolutional neural networks

(CNN). Similar to NN, CNN was inspired by the biological processes found in the

animal visual cortex. One major difference of CNN is that CNN uses filters to con-

volve the input. The schematic of a typical CNN is shown in fig. 2.2. By moving

a filter (window) across the image (for the 2D case), the weights are learned. CNN

in particular exploits two concepts (i) locality and (ii) shared weights. Because the

nature of the receptive fields (filters), the convolutional layers enforce local connec-

tivity. This concept is important and very useful to study systems that have local

interactions. Indeed, many physical systems have interactions that are local in space.
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Figure 2.3: The illustration of convolution operations and max- and mean pooling on
images. In this example, the first filter detects the horizontal lines while the second
filter detects the diagonal line. In the real training, the weights are updated during
the training phase.

Second, as the filters are moved across the input, some parts of the input will have

same responses without the need of having additional filters. This allows the detec-

tion of specific features using the same filter regardless the location of the feature

in the input.In physics, we encounter this same important concept of translation in-

variance. The parameter sharing and enforcing local connections reduce number of

weights (parameters to be learned), and this gives CNN advantages over NN, as the

fully-connected one will have many redundant weights to describe the same transfor-

mation map. The convolution operations, are illustrated in fig. 2.3. In the examples,

the filters are used to detect horizontal lines and diagonal lines.

Because of all these advantages, CNN is the most commonly used deep learn-

ing method for categorizing images. In addition to convolutional layers and fully-

connected layers, pooling layers are often used in deep CNNs [58, 60]. Pooling layer

is useful to reduce the size of the inputs, i.e. summarizing information passed from

the previous layer. Down-sampling a representation of images is useful to reduce
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the computational cost as the down-sampling reduces number of parameters that

need to be learned. The most commonly used pooling layers are max-pooling and

mean-pooling. Max pooling operation is done by taking only maximum values of

subregions of the initial representation, while mean pooling is taking the mean of

subregions the initial representation. The convolution operations, max-pooling and

mean pooling operations are illustrated in fig. 2.3. After passing the input through

convolutional layers, fully-connected layers are often added to further transform the

extracted features (e.g. edges) in order to produce a desired objective function, such

as for classification or regression task. The architecture a typical CNN is shown in

fig. 2.2.

At the end of the final layer, a loss function is chosen to evaluate the performance

of the model. The most commonly used loss functions are the cross-entropy for

classification tasks and the mean-squared for regression tasks. The mean-squared

loss function is given by

L(ŷyyi, yyyi) =
m∑
i

|ŷyyi − yyyi|2, (2.27)

where yyy is the true value, ŷyy = f(xxx) is the predicted value, and m is number of

samples. During the training the loss function is minimized, as the goal is to build

a model that outputs values close to the true model. The weights in the filters and

neurons are updated using the forward and back propagation algorithm [61]. We

also want to note that there are many “tricks” to train deep networks, such as ways

to avoid overfitting with dropout and other regularization schemes, and choices of

optimizers to update the weights. The technical details can be found in machine

learning books (e.g. Ref. [58]) and a review on introduction to machine learning

intended for physicists [60].
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2.3 Summary

From this chapter, we see that there are clearly different methodologies and approx-

imations used in DFT and MD simulations. DFT approximation is closer to the

true model of representing materials. The quantum mechanical treatments on the

many-electrons allow DFT to study chemical reactions and other electronic proper-

ties. This approach comes at a computational cost with computational time scaling

like O(N3), where N is the number of electrons. The MD approach on the other hand

does not treat the electrons quantum mechanically. By treating nuclei and electrons

as one entity, MD does not find the electronic ground state. The time complexity

of MD goes like O(N2), where N is number of atoms. This allows MD to simulate

thousands to millions of atoms, while only a few hundreds of atoms can be simulated

in DFT. To get a good accuracy, however, MD relies heavily on good interatomic

potentials. In the last part of the chapter, we introduced some basics of NN and

CNN and outlined some advantages of using machine learning approach to build an

effective model without knowing the underlying physical principles.
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Chapter 3

Polarization and Valley Switching in

Monolayer Group-IV Monochalcogenides

Recently, puckered layered materials (such as black phosphorus and the group-IV

monochalcogenides) have been added to the list of two-dimensional (2D) electronic

membranes. These newer materials have many important new properties which

differ from those of the most studied 2D materials, graphene and the transition

metal dichalcogenides. Apart from interesting basic physics questions, these mate-

rials promise many novel applications, ranging from photovoltaics and piezoelectrics

to valleytronic devices.

In this chapter, we present the studies of two structural phases of SnS and GeSe

and demonstrate how their puckering and electric dipole orientations can be switched

through the application of either stress or an electric field, which is essential for

storing information. Further, we studied the band structure and found that the two

valleys located in two different principal axes of the Brillouin zones can be excited

selectively using linearly polarized light. By understanding the selection rules, we are

able to address bits of information (orientation of the puckering or electric dipole)

using optical transitions.

Our key findings are (i) SnS and GeSe are suitable for ferroelectric devices as

their polarizations can be controlled through application of electric field and (ii) the



32

dipole states can then be detected by an optical transition since the band structure

is governed by the puckering orientation. Our results are scientifically important,

as maintaining ferroelectricity in atomically thin films remains a challenge due to

depolarization and technologically important for potential devices. We also want to

note that soon after our theoretical study, it has been shown experimentally that

selective valley polarizations on different valleys (located orthogonally in Brillouin

zone) can be achieved via linearly polarized light [62].

The work presented in this chapter (with slight modifications) has been published

in:

• P. Z. Hanakata, A. Carvalho, D. K. Campbell, H. S. Park,

“Polarization and valley switching in monolayer group-IV monochalcogenides,”

Physical Review B 94 (3), 035304 (2016).

3.1 Introduction

The discovery of 2D materials that can be isolated into single layers through ex-

foliation and exhibit novel properties has established new paradigms for ultrathin

devices based on atomically sharp interfaces [17, 18]. In particular, transition metal

dichalcogenides (TMDs) have been studied extensively and have shown potential

for many technological applications ranging from photovoltaics to valleytronic de-

vices [12, 63, 64, 65, 66, 67, 68]. The family of monolayer 2D materials has recently

grown to include other 2D semiconductors, such as phosphorene and related materi-

als.

However, one of the features thus far lacking for applications both in 2D elec-

tronics and in valleytronics is non-volatile memory. Ferromagnetism, an essential

element in spintronic memories, is believed to be achievable in graphene and other
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2D materials but so far remains difficult to realize and control [69]. Ferroelectric

memories, in which the information is stored in the orientation of the electric dipole

rather than in the magnetization are a possible option. Single-layer graphene (SLG)

ferroelectric field-effect transistors (FFET) with symmetrical bit writing have been

demonstrated [70], but the prototypes rely on bulk or thin film ferroelectric sub-

strates [70] or ferroelectric polymers [71], rather than on crystalline atomically thin

ferroelectric materials. An altogether different approach to information storage relies

on phase change materials, where the bit value corresponds to a distinct structural

phase of the material. Researchers have recently optimized the phase switching en-

ergy by using superlattice structures where the movement of the atoms is confined

to only one dimension [72].

In this article, we analyze the stability of group-IV monochalcogenide MX (M=Ge

or Sn, and X=S or Se) monolayers, paying particular interest to their potential as

memory functional materials. As prototypes, we use SnS and GeSe. In ambient con-

ditions, bulk SnS and GeSe crystallize in the orthorhombic structure of the Pnma

space group. At 878 K, SnS goes through a second-order displacive phase transi-

tion into the β-SnS phase with Cmcm symmetry [73, 74], which is also a layered

phase that can be viewed as a distorted rocksalt structure. For bulk GeSe, such a

phase transition has not been observed. Instead, at 924 K bulk GeSe transforms

into the rocksalt phase (Fm3̄m). This phase can also be stabilized using external

pressure [75].

Similar to phosphorene [29, 76], Pnma SnS and GeSe can be exfoliated [77, 78].

In monolayer form, they feature multiple valleys, large spin-orbit splitting[79] and a

piezoelectric coefficient that surpasses that of the TMDs [80, 81]. Having an in-plane

polar axis makes SnS and GeSe monolayers capable of a mechanical response to an
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applied electric field.

Here, we use density functional theory (DFT) calculations to characterize the

multistability of SnS and GeSe, exploring ways in which the phase transitions and

domain switch can be triggered externally. We start by demonstrating how the

reversible phase transition can be induced by uniaxial stress or electric field. Then,

we show how the phase and lattice orientation states can be detected using the valley

properties.

3.2 Computational Methods

The calculations were based on density functional theory (DFT) implemented in

the Quantum ESPRESSO package [82]. The generalized gradient approximation

(GGA) of Perdew-Burke-Ernzerhof (PBE) was used for the exchange and correla-

tion functional, and Troullier-Martins type pseudopotentials [83]. The Kohn-Sham

orbitals were expanded in a plane-wave basis with a cutoff energy of 70 Ry, and for

the charge density a cutoff of 280 Ry was used. A k-point grid sampling grid was

generated using the Monkhorst-Pack scheme with 10×10×1 points [84], and a finer

regular grid of 80×80×1 was used for transition probability calculations. The equi-

librium structures were found by using a conjugate-gradient optimization algorithm,

and the energy landscape is mapped by relaxing the structure under constraints for

each of the in-plane lattice parameters, while all the other structural parameters are

allowed to relax. The input files can be found in A.0.1 and A.0.2.

We used the modern theory of polarization [85] to calculate the spontaneous

polarization given by

~P =
1

Ω

∑
τ

qion
τ Rτ −

2ie

(2π)3

occ∑
n

∫
BZ

d3ke−i
~k·R
〈
unk

∣∣∣∂unk
∂k

〉
, (3.1)
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where qτ is the ionic charge plus the core electrons, Rτ is the position of ions, Ω

is the unit cell volume, e is the elementary charge, n is the valence band index,

k is the wave vector, and unk is the electronic wave function. The first term is

the contribution from ions and core electrons, and the second term is the electronic

contribution defined as adiabatic flow of current which can be calculated from the

Berry connection [85]. The response of the material to a homogenous static external

electric field is calculated based on methods developed by Refs. [86, 87] implemented

in the Quantum ESPRESSO package [82].

3.3 Results

3.3.1 Multistability of SnS and GeSe in the Monolayer Phase
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Figure 3.1: Schematic configuration-coordinate diagram for Cmcm-ML and Pnma-
ML phases, in SnS and GeSe.

We start by exploring the energy landscape of monolayer SnS and GeSe. We

consider the monolayer form of the two structures that are known for bulk SnS ie.,

a centrosymmetric structure (Cmcm), and the Pnma structure resembling black

phosphorus, and which is the only known layered structure of bulk GeSe. We will

designate the respective monolayer phases by appending ‘ML’ to the respective bulk

space group.

The atomic positions in the Pnma-ML phase are ±(M:0.25±δ, 0.25, 0.05; X:0.25,
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0.25, -0.05) in fractional coordinates, where M=(Sn, Ge) and X=(S, Se), δ = 0.06

and 0.08 for SnS and GeSe, respectively. The Cmcm-ML phase is obtained by taking

δ = 0. As a result, the Cmcm-ML has two perpendicular mirror symmetry planes,

as well as inversion symmetry, while Pnma-ML has no inversion symmetry. In our

DFT simulations we used δ = 0.01 as a tolerance to distinguish the Pnma-ML phase

from the Cmcm-ML phase. We define puckering orientation as a unit vector of the

in plane bond formed by the nearest neighbor of MX atoms in the direction of the

broken mirror symmetry. For the SnS structure shown in Fig. 3.2(d), the puckering

direction d̂puck = x̂ as we define d̂puck = ~xS− ~xSn

| ~xS− ~xSn|
.

The Pnma-ML and the Cmcm-ML phases can both be seen as distortions of

a rocksalt bilayer that can be transformed into each other by a displacement of

some of the atoms along x̂ (see Fig.3.2 for x̂ and ŷ directions). The Cmcm-ML and

Pnma-ML phases of SnS and GeSe monolayer have also been reported in Ref. [88].

By symmetry, there are four distinct Pnma-ML configurations (equivalent by π/2

rotations of the puckering direction). For SnS, Cmcm-ML is a local minima of the

energy surface. For GeSe, the Cmcm-ML structure is not an energy minimum but

a saddle point. The activation energy for reorientation of the Pnma-ML puckering

direction is very small (88 meV for SnS and 43 meV for GeSe). We note that GGA

has been successful in predicting the small enthalpy differences (tens of meV) between

different phases of ferroelectric materials, because systematic errors cancel out when

comparing systems with very similar structures [89]. The broken inversion symmetry

and total energy with a typical double-well potential of SnS and GeSe are the first

two indications that these materials may possess ferroelectricity.



37

a 

b 

y 

x 

ky 

kx 

z 

x 

Γ 

M 

X 

Y 

(c) 

(d) 

(e) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
ε

0

1

2

3

St
re

ss
 (G

Pa
) 

x-direction
y-direction 0 0.1 0.2 0.3εx

0
0.5

1
1.5

2
2.5

St
re

ss
 (G

Pa
) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
ε

0

1

2

3

4

5

6

7

St
re

ss
 (G

Pa
)

x-direction
y-direction

0 0.1 0.2 0.3 0.4 0.5
εx

0 0.1 0.2 0.3 0.4

εy

0 0.1 0.2 0.3 0.4 0.5
εy

0

1

2

3
St

re
ss

 (G
Pa

) 

I

II

(a) 

(b) 

I
II

Figure 3.2: Stress-strain curves of monolayer (a) SnS and (b) GeSe for tensile strain
along the x̂ (black circle) and ŷ (red square) directions. (I) indicates the Pnma-ML
structure reconfiguration such that the puckering (armchair) direction d̂puck becomes
ŷ instead of x̂. (II) indicates the transformation into an hexagonal phase. In the
insets of (a) and (b), the strain in the ŷ direction was shifted to highlight the rotation
of the Pnma-ML structure by π/2, swapping the armchair and zigzag directions. (c)
and (d) top and side view of SnS structure with d̂puck = x̂. The larger grey atom is
Sn and the smaller yellow atom is S. (e) The respective Brillouin zone and the high
symmetry points.

3.3.2 Application of Uniaxial Stress

The phase transition of SnS to Cmcm-ML, or equivalently the reorientation of the

Pnma-ML structure, can be induced by in-plane uniaxial tensile stress (Fig. 3.2).

We use an effective thickness to estimate the values of stress, as outlined in Ref. [81].

For uniaxial stress along ŷ, the SnS structure begins to resemble Cmcm-ML as

the shorter lattice parameter b is stretched. For εy > 0.08, uniaxial stress results in
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Figure 3.3: Structural visualization of clamped SnS monolayer under uniform electric
field at points of transition. Puckering and electric dipole orientation (red arrow)
can switch from positive x̂ (b) to either negative x̂ (a) or positive ŷ (c) depending
on the directions of applied electric field.

the rotation of the Pnma-ML structure by π/2. The puckering d̂puckthus rotates from

x̂ to ŷ [Fig. 3.2(a), transition I]. Similar qualitative behavior is observed in GeSe (see

Fig. 3.2(b)). Both SnS and GeSe transit to Cmcm phase, but they spontaneously

revert back to Pnma once the tensile stress is removed 1.

The application of uniaxial stress along x̂ reveals another phase transition at

εx = 0.72 and 0.78 for SnS and GeSe, respectively. The structure is a hexagonal

phase resembling blue phosphorene (see Ref. [90]). The hexagonal structure and its

band structure are plotted in Fig. 3.4.

3.3.3 Application of Electric Field

Application of an electric field is an alternative way to trigger the transition between

different minima on the energy surface of SnS or GeSe. Since the Pnma-ML structure

1 We found that once the stretch is removed the Cmcm structure spontaneously reverts back to
Pnma for both SnS and GeSe. However, we found that during compression, the Cmcm phase of
SnS is stable.
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is piezoelectric, the application of an electric field along the polar (x̂) direction in a

mechanically free sample induces strain as well [81]. However, here we will consider,

for simplicity, the application of an electric field to a mechanically clamped sample.

The spontaneous polarization in the Pnma-ML phase, which was measured with

respect to the centrosymmetric structure by taking as the effective volume the equiv-

alent volume occupied by a layer of the bulk unit cell, is 0.6 and 1.7 C/m2 for SnS

and GeSe, respectively, which is comparable to that of 3D ferroelectrics [91].

In this case, application of an electric field with polarity opposed to the bond

dipole results in bonds breaking and creates new bonds with inversion of the polar-

ization along x̂, rather than in a rotation of the structure. As shown in Fig. 3.3 (a)

the ionic configuration changes (i.e., d̂puck switches from x̂ to −x̂), and it is apparent

from Eq. 3.1 that the electric dipole orientation can be switched, which we have

found to be the case based on our DFT calculations.

The coercive field for this puckering transformation is 0.18×107 V/cm for SnS

and 0.51×107 V/cm for GeSe. Moreover, we found that applying an electric field in

ŷ at 0.29×107 V/cm (0.80×107 V/cm) could also convert the d̂puck from x̂ to ŷ for

SnS (GeSe). The coercive field calculated by this method corresponds to the electric

field at which the unfavorable phase becomes unstable and can be seen as an upper

bound for the coercive field of a real multi-domain material. This is usually smaller

provided that the domain walls are mobile at that temperature and, according to a

recent work [92], the domain wall energy is small for this class of materials. Thus, the

electrical fields necessary for ferroelectric switching are clearly achievable in current

2D experiments [93]. The structures of SnS monolayer under electric fields at which

the puckering orientation switches are plotted in Fig. 3.3.

Since the two materials possess a spontaneous, reversible polarization and bista-
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Figure 3.4: Representative band structures of SnS monolayers (a) unstrained, (b)
to (d) under tensile uniaxial stress along the x̂ for axial strains of εx = 0.22 to
εx = 0.75, and (e) to (g) under tensile uniaxial stress along ŷ for axial strains of
εy = 0.02 to εy = 0.27. The dotted lines locate the valence band maxima. The
corresponding side and top view of structural visualizations are below the band
structure plots. It is apparent that the band structure (b) εx = 0.22 (or an uniaxial
stress of σxx ∼ 1.4GPa) is equivalent to the band structure (g) εy = 0.27 (or an
uniaxial stress of σyy ∼ 1.4GPa) if the x̂ and ŷ are inverted (rotation around Γ axis
on figures).

bility, they classify as ferroelectrics. The configuration-coordinate diagram of GeSe

is typical of a ferroelectric with second-order phase transition at T = 0 (consistent

with the change in symmetry). The energy curve for SnS has a minimum rather than

a saddle point at Cmcm-ML, and therefore resembles a ferroelectric with first order

phase transition, with the peculiarity that the Cmcm-ML structure is stable for all

T > 0. Recently, based on Car-Parrinello molecular dynamics simulations, Mehboudi

et al. showed that monolayer monochalcogenides undergo an order-disorder phase

transition [88]. Hence, since SnS and GeSe have four degenerate Pnma-ML phases,

we expect that the average total polarization goes to zero as temperature approaches

Tm.
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3.3.4 Band Structure

The phase transitions are accompanied by changes of the band structure and can,

therefore, be detected optically. Representative SnS and GeSe band structures under

uniaxial stress are shown in Fig. 3.4 and Fig. 3.5, respectively. We note that even

though the band gap is underestimated due to our usage of DFT as the calculation

method [79], the dispersion of the bands is accurately reproduced. Unstrained SnS is

an indirect-gap semiconductor with its valence band maximum located near the X-

point (along the Γ-X line) and the conduction band minimum near the Y-point (along

the Γ-Y line). There are, therefore, two two-fold degenerate valleys, designated Vx

and Vy, respectively. At large strains along x̂, SnS transforms to a hexagonal phase

at εx = 0.72 resembling blue phosphorene (Fig. 3.4 (c)) [90] and becomes a direct
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gap at εx = 0.75. For uniaxial stress along ŷ there is a transition from indirect gap

to direct gap at εy = 0.02 (see Fig. 3.4(e)), after which the system again becomes

indirect gap.
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Figure 3.6: Projected density of states (PDOS) of SnS (a) to (e) and GeSe (f) to
(j) for different strains. The top panels are PDOS of Sn (Ge) atom and the bottom
panels are PDOS of S (Se) atom.

The band structure of GeSe under uniaxial stress is shown in Fig. 3.5 (a) to

(d) for the x̂ and (e) to (h) for the ŷ. Even though unstrained GeSe is a direct-

gap semiconductor, there are also two nearly degenerate conduction band minima

at the Vx and Vy points. The swapping between the x̂ and ŷ of the Pnma-ML

structure under tensile stress along the ŷ direction occurs at εy = 0.15 and is in this

case accompanied by a loss of the direct bandgap, which becomes indirect as the
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Figure 3.7: Schematic of valley polarization

structure reverts back into Pnma-ML.

As shown in Fig. 3.5, the band structure (b) εx = 0.22 is equivalent to the band

structure (h) εy = 0.30 if the x̂ and ŷ are inverted (rotation around Γ axis on figures).

The transition to a hexagonal phase under tensile stress along x̂ (εx = 0.78) is also

accompanied by an indirect- to direct-gap semiconductor transition.

In addition, we calculated the projected density of states for SnS and GeSe for

various strains (Fig. 3.6). The trends of the evolution of PDOS of GeSe and SnS with

increasing strain are similar. Specifically, the relative contributions of the p-orbitals

for Sn and Ge atoms at energies close to the maximum valence band increases with

increasing strain.

3.3.5 Valley Selection Rules

Transition metal dichalcogenides (TMDCs) have been studied extensively and have

shown potential for many technological applications ranging from photovoltaics to
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Figure 3.8: Band gap surfaces (a) εx = 0.22 and (b) εy = 0.27 demonstrate the
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uniaxial stress along ŷ, highlighting the phase transition. Under small strain, the
direct transition at Vx is only visible under incident x-polarized light, while the Vy
transition is visible under both incident y and x (with a small coupling) polarized
light.

valleytronic devices. Despite of the fast growth of generated data, currently at ∼

2.5 quintillion bytes of data per day, there have been only few developments on

applications of 2D materials for memory devices.

Analogous to spintronics, an emerging field called “valleytronics” attempts to

store and manipulate information in semiconductors that possess multiple “valleys”

(in momentum space). Before going further we will discuss how can we utilize valley

degree of freedom in semiconductors to store bit of information. Supposed we have a

semiconductor with four valleys located near the boundary of a rectangular Brillouin

zone k = {X,X ′, Y, Y ′} = {[fπ/a, 0], [−fπ/a, 0], [0, fπ/a], [0,−fπ/a]}, where f is

some number close to one. Further, suppose that the semiconductor has a gap on
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the order of a few electron volt so that the electrons can be excited from the valence

band to the conduction band. Mathematically, we can write the interband transition

probability at a given vector k as [66, 94]

Pi(k) ∝
∣∣∣∣m~
〈
c(k)

∣∣∣∣∂H∂ki
∣∣∣∣ v(k)

〉∣∣∣∣2 , (3.2)

where i is the direction of the light polarization, c(k) is the conduction band wave

function, v(k) is the valence band wave function, and H is the Hamiltonian. Alter-

natively, one can relate the transition probability to the dipole moment between the

initial and the final bands: 〈c|p̂x/y|v〉, where the momentum direction corresponds

to the light polarization. And supposed further that there is some selection rule such

that we can selectively excite a certain valley using a light with a specific polariza-

tion. This approach is known as selective valley polarization. Similar to spin-up and

spin-down, we can define ‘1’ when the X valleys are occupied and ‘0’ when the Y

valleys are occupied. This mechanism is the basic approach to build a valleytronic

device. The schematic of selective valley polarization is shown in fig. 3.7.

While this approach seems promising, the valleytronic property by itself cannot

be utilized for non-volatile memory because of its transient nature as the relaxation

time (inter-valley scattering time scale) is on the order of femtosecond. In this work,

we propose to use group-IV monochalcogenides monolayers that are structurally

bistable. Switching between two identical, but rotated states can be done mechani-

cally by strain (or electrically by field) and optical readout of the state is based on

valley selection rules.

The selection of valleys Vx or Vy can be achieved by at least two different optical

methods: (i) using the fact that the direct gap is different at the two valley pairs; or

(ii) using the optical selection rules. The direct transitions at the Vx and Vy valleys
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have different energies, provided there is a means to identify the orientation of the

crystal (Fig. 3.8). We plot the energy difference between valence and conduction

band of SnS as functions of in plane wave vectors shown in Fig. 3.8 (a) and (b). It

can be seen that the gap surface of εx = 0.22 (Fig. 3.8 (a)) is equivalent to εy = 0.27

(Fig. 3.8 (b)) but rotated 90◦. It is evident that under uniaxial stress in ŷ the bands

have rotated in the Brillouin Zone, i.e. the Vy valley effectively becomes the Vx valley

after passing the transition point of εy=0.08.

Using linearly polarized light to select the valleys Vx or Vy provides an additional

method to detect the phase transition optically. For the transition to be allowed, the

dipole moment must not vanish. It is possible to determine whether it is finite or

not using the symmetry of the bands and the momentum. Since the dipole moment

is computed by integrating the product of the initial and final wave functions, and

the momentum, it is nonzero only if this product (∝ c†(r)∂x/yv(r)) is not odd with

respect to any of the axes. In other words, the integrand must remain unchanged

under every symmetry transformation of the space group characterizing the crystal.

We used our ab initio results to calculate the transition probabilities. For un-

strained SnS, ŷ-polarized light populates only the Vy valleys, as there is no coupling

between the valence and conduction band at Vx in the ŷ direction (see Fig. 3.8 (d)).

As shown by Ref. [94], the conduction band, valence band, and the px have a

same irreducible representation. Consequently, the direct product of these quanti-

ties results in a non-vanishing transition probability coupling. On the other hand,

ŷ-polarized light cannot excite Vx, as it possesses different representation. x̂-polarized

light can populate both Vx and Vy but it populates predominantly the Vx valleys, with

Px(Vx)/Px(Vy) ∼ 40. Similar behavior is observed in GeSe with a smaller selective

valley polarization ratio. For instance, with linearly x̂-polarized light the selective
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valley polarization ratio was found to be Px(Vx)/Px(Vy) ∼ 15.

The evolution of local gap Vx and Vy of SnS under stress in the ŷ direction is

shown in Fig. 3.8(c). We see that there is an abrupt change in Vy gap near the

transition point εy = 0.08. We also plot the relative polarization Py(Vx)/Px(Vx)

and Px(Vy)/Py(Vy) as a function of axial strain εy, shown in Fig. 3.8(d) and (e)

for SnS and GeSe, respectively. As we discussed earlier, x̂-polarized light populates

predominantly the Vx valleys but there is still a small transition probability at Vy

when x̂-polarized light is used. The absorption threshold for x̂-polarized light has an

abrupt change near εy = 0.08 (εy = 0.15 for GeSe), when the phase transition takes

place. However, the absorption edge for ŷ-polarized light changes smoothly.

Before the transition point, the structure has a mirror symmetry inverting ŷ, and

the Vy valleys can be populated using polarized light along ŷ and x̂ (the latter with

a very small coupling). However, after the transition point, the puckering direction

is rotated to be in the ŷ, and the reflection symmetry in ŷ is broken, whereas a

reflection symmetry emerges in x̂. As a result, Vx can be excited by both x̂ and

ŷ polarized light after the transition takes place. We have therefore demonstrated

how optical transitions can be used to detect the orientation of the structure which

determines valley configurations.

3.4 Summary

In summary, we have used first-principles calculations to demonstrate the potential

of group-IV monochalcogenide monolayers as functional materials for information

storage. This strategy, demonstrated using SnS and GeSe as prototypes, relies on

the metastability and the possibility of switching the polarization direction using

stress or electric field, creating a binary memory device. Comparing these prototype
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materials, SnS differs from GeSe because it has a stable centrosymmetric phase which,

at T = 0, is close in energy to the Pnma-ML phase.

Due to their peculiar band structures, both SnS and GeSe could in principle be

used as functional materials for memory devices that can easily be interfaced with

valleytronics logic. Valleytronics is based on the concept that the valley index can

potentially be used to store information for subsequent logic operations, equivalent

to spin in spintronics. However, in most valleytronics materials the information can

be considered non-volatile only up to the timescale defined by inter-valley scatter-

ing processes, which are ubiquitous in real materials. Structural changes, used to

store information in phase change memory devices, take place on a timescale orders

of magnitude longer. Materials such as SnS and GeSe can be used to convert in-

formation stored as structural phase into information stored as valley index. One

possibility is for example by using near-bandgap light that excites only the pair of

valleys corresponding to the lowest energy exciton. The subsequent electronic state

will have electron-hole pairs with momentum (±kx, 0) or (0,±ky), depending on the

structure orientation. This valley state can be transmitted onto a valley-filter [95].

Alternatively, if coupled to a polarized light detector, the polarization switching can

be detected optically taking advantage of valley-dependent direction of the linear

polarization of the luminescence [94].
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Chapter 4

Tight-binding Formalism

As we discussed earlier in Chapter 1, studies of materials based on density functional

theory (DFT) approach are limited to small systems, usually around a few hundreds

of atoms. Classical molecular dynamics (MD) is another method that can efficiently

simulate thousands to millions of atoms. The MD method however does not calculate

electronic properties such as band structure. Thus, development of a tight-binding

model is needed to “bridge” the MD and the electronic properties. TB can capture

the important physics (e.g. band structure near the Fermi level) based solely on

atomic configurations, which can be obtained from the MD simulations.

In this chapter, we present some basic principles to develop a tight-binding (TB)

model for monolayers. Specifically, we build a TB model for two atoms on a square

lattice. Spin-orbit interactions (SOI) are included as we are interested in the studies

of monolayers with strong SOI. In addition, we will also derive some properties of

the material under external fields, such as in-plane magnetic field.

The work presented in this chapter (with some modifications) are parts of the

following published papers:

• P. Z. Hanakata, A. S. Rodin, A. Carvalho, H. S. Park, D. K. Campbell,

A. H. C. Neto,“Two-dimensional square buckled Rashba lead chalcogenides”

Physical Review B 96 (16), 161401(R) (2017).
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• P. Z. Hanakata, A. S. Rodin, H. S. Park, D. K. Campbell, A. H. C. Neto,

“Strain-induced gauge and Rashba fields in ferroelectric Rashba lead chalco-

genide monolayers PbX monolayers (X=S, Se, Te)” Physical Review B 97 (23),

235312 (2018). (2016).

• A. S. Rodin, P. Z. Hanakata, A. Carvalho, H. S. Park, D. K. Campbell,

A. H. C. Neto,

“Rashba-like dispersion in buckled square lattices,” Physical Review B 96 (11),

115450 (2016).

4.1 Introduction

Lead chalcogenide PbX (X=S, Se, Te) consists of two atoms per unit cell, denoted

by A and B atoms, respectively. Lead is a heavy atom (Z(Pb)=82), and it is crucial

for creating large spin-orbit interaction (SOI). The schematic top and side views of

a buckled AB lattice and the Brillouin zone are shown in fig. 4.1(a). aaa is the unit

lattice vector and δδδj is the vector connecting atom i and its j neighbor. We denote

the relaxed bond length between the neighboring A and B atoms by d, the vector

connecting A and B atoms in the (0, 0) unit cell δδδ1 = d(α, α,−γ) where α = cos θ√
2

,

γ = sin θ, and θ is the buckling angle (with θ = 0 corresponding to a flat lattice).

From DFT calculations we found that the bands near the Fermi level are mostly

composed of s and p orbitals from both A and B atoms [35]. In this work we will

include first nearest neighbors interaction and SOI. For the two atom AB unit cell

shown in Fig. 8.1(a), the relevant orbital basis involves {sA, pAx , pAy , pAz , sB, pBx , pBy , pBz }.

As we include the SOI, we will write our Hamiltonian in angular momentum ba-

sis. The dimension of the total Hilbert space is 16 × 16 with new basis of |µ〉 →

|m〉|morb〉|s〉, where m = {|A〉, |B〉} is the sublattice degree of freedom, morb =
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{|0, 0〉, |1, 1〉, |1,−1〉, |1, 0〉} is the orbital angular momentum degree of freedom, and

s = {(|+〉, |−〉} is the spin degree of freedom.

4.2 Tight-binding Model

a"

z"

y"

dϒ#

δ 

y"

x"

a=2dα" θ 

(a) 

(b) 

Γ X

Y M

kx

ky

Brillouin Zone

Figure 4.1: (a) Schematic top and side view of PbX and the corresponding Brillouin
zone.

The lead chalcogenide monolayer has two atoms per unit cell (A,B). The wave

function of sublattice A then can be written as

ψA(r) =
1√
N

∑
k,µ

eik·Raµ,kφµ(r−R), (4.1)

where R is the lattice vector, k is a wave vector, µ is the basis wave function

[s, px, py, pz]. Including only nearest neighbor hopping the spinless Hamiltonian can

be written as

Horb =
∑
µ,ν

∑
i,j

[tij,µνc
†
i,µcj,ν + h.c] +

∑
µ,ν

∑
i

Eµνc
†
i,µci,ν , (4.2)

where 〈i, j〉 runs over the onsite cell and the nearest neighboring cells. c†i,µ creates an

electron in the unit cell i with atomic orbital µ. We can write this more compactly
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as

Horb =

HAA HAB

H†AB HBB

 , (4.3)

where HAA (the onsite term) is given by

HAA =



Es
A 0 0 0

0 Epx
A 0 0

0 0 E
py
A 0

0 0 0 Epz
A


. (4.4)

To write down the hopping matrix, we use the following Slater-Koster matrix ele-

ments for the orbitals of neighboring atoms [96]:

s-s : Vssσ ,

s-p : Vspσd̂ · ôj ,

p-p : (ôi · ôj)Vppπ +
(
ôi · d̂

)(
ôj · d̂

)
(Vppσ − Vppπ) . (4.5)

Here, ôi is the orientation of the ith orbital and d̂ is the unit vector pointing from

atom 1 to atom 2. If we include up to first nearest neighbors only we can write the

inter-lattice hopping matrix HAB ≡ K as

K = ΘΓ



Vssσ 0 0 −γV (1)
spσ

0 Vppπ + α2∆ 0 0

0 0 Vppπ + α2∆ 0

γV
(2)
spσ 0 0 Vppπ + γ2∆


+ 4α2∆ΘM



0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0


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+ 4αΘX



0 iV
(1)
spσ 0 0

−iV (2)
spσ 0 0 −iγ∆

0 0 0 0

0 −iγ∆ 0 0


+ 4αΘY



0 0 iV
(1)
spσ 0

0 0 0 0

−iV (2)
spσ 0 0 −iγ∆

0 0 −iγ∆ 0


. (4.6)

where

ΘΓ = cos
kxa

2
cos

kya

2

ΘM = sin
kxa

2
sin

kya

2

ΘX = sin
kxa

2
cos

kya

2

ΘY = sin
kya

2
cos

kxa

2
.

The momentum π/a ≤ kx/y ≤ π/a and γ = sin θ. We see that Θ is dictated by

crystal symmetry. Θksimmetry equals to one if k = ksimmetry. To keep the expression

more compact, we have introduced ∆ = Vppσ − Vppπ. In addition, since the A and B

species are not necessarily the same, we have two quantities of the Vspσ form.

While it is convenient to use s and p orbitals to write down the hopping matrix,

since we are interested in including SOI in our model, it is helpful to go to a basis

which is more natural for the angular momentum operators:

|0, 0〉 = |s〉 , |1,±1〉 =
∓|px〉 − i|py〉√

2
, |1, 0〉 = |pz〉 , (4.7)

where the first number represents the orbital momentum quantum number and the

second one is its projection along the ẑ direction. This basis change does not alter

the HAA and HBB matrices. The inter-lattice hopping portion of the Hamiltonian,
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on the other hand, becomes

K̄ = ΘΓ



Vssσ 0 0 −γV (1)
spσ

0 Vppπ + α2∆ 0 0

0 0 Vppπ + α2∆ 0

γV
(2)
spσ 0 0 Vppπ + γ2∆


︸ ︷︷ ︸

KΓ

+4α2∆ΘM



0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0


︸ ︷︷ ︸

KM

+

+ 2
√

2αΘX



0 −iV (1)
spσ iV

(1)
spσ 0

iV
(2)
spσ 0 0 iγ∆

−iV (2)
spσ 0 0 −iγ∆

0 iγ∆ −iγ∆ 0


︸ ︷︷ ︸

KX

+2
√

2αΘY



0 V
(1)
spσ V

(1)
spσ 0

V
(2)
spσ 0 0 γ∆

V
(2)
spσ 0 0 γ∆

0 −γ∆ −γ∆ 0


︸ ︷︷ ︸

KY

.

(4.8)

From here we write H ≡ UHorbU
−1, where U is a matrix projector from the orbital

basis to the angular momentum basis.

4.3 Spin-orbit Interaction

To include the SOI, we use the standard form describing the spin-orbit coupling

arising from the interaction with the nucleus:

HSOI = TX

(
L+ ⊗ s− + L− ⊗ s+

2
+ Lz ⊗ sz

)
, (4.9)

where X is either Pb or X (X=S, Se, Te). The last term modifies the diagonal

elements of the self-energy for |1,±1〉 by adding (subtracting) TX/2 if Lz and sz

point in the same (opposite) direction. The first tem couples |1, 1〉 ⊗ | ↓〉 with

|1, 0〉 ⊗ | ↑〉 and |1,−1〉 ⊗ | ↑〉 with |1, 0〉 ⊗ | ↓〉 with the coupling strength TX/
√

2.
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The total Hamiltonian can then be written as

Htot = H ⊗ 12x2 +HSOI (4.10)

4.3.1 Energy Splitting in Free Electron Model

Before going to see the effects of buckling (symmetry breaking) and SOI on the band

structure, we will review some basics of energy splitting. Kramers theorem states

that if time-reversal symmetry is not broken then all eigenstates are at least doubly

degenerate. We will denote T as the time-reversal transformation and R as the

spatial-inversion transformation. By time-reversal symmetry, t → −t and k → k.

This implies that T : Es(k) = E−s(−k), where E is the eigen energy and s is the spin.

If SOI does not present then E(k) = E(−k), regardless of the inversion symmetry.

For a centrosymmetric crystal we have

T :Es(k) = E−s(−k) (4.11)

R :E−s(−k) = E−s(k) (4.12)

=⇒ Es(k) = E−s(k). (4.13)

If a crystal is not centrosymmetric then Es(k) 6= E−s(k). Energy splitting can

occur in a non-centrosymmetric material at zero magnetic field. From this symmetry

analysis we expect that the out-of-plane buckling will play an important role in

splitting the energy. Another way to understand energy splitting is to consider 2D

free-electron gas under external fields. Without any external field, the energy should

be degenerate for all k and the energy dispersion is quadratic. As we break the time-

reversal symmetry by applying an out-of-plane magnetic field BBB, the energies are no

longer degenerate at each k. The energy splitting is constant and proportional to the
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Free electron Free electron  
+perpendicular electric field 

Free electron  
+perpendicular magnetic field 

Figure 4.2: Band energy of 2D free-electron gas in without any external field, with
out-of-plane magnetic field, and with out-of-plane electric field.

strength of the applied magnetic field E± = ~~2k2

2m
± µB⊥, where µ is the magnetic

moment. Spins are polarized in the direction of the magnetic field and this energy

splitting is known as the Zeeman splitting.

Electron moving in a electric field will experience an effective magnetic field

k×EEEfield in its rest-frame. In solids, the electric field is given by EEEfield = ∇V , where

V is the crystal potential. For simplicity we will consider a constant out-of-plane

electric field. This electric field does not break the time-reversal symmetry, however

it does break the inversion symmetry. The energies are no longer degenerate except

at the protected time-reversal point (k = 0). This simple picture is often used

to describe Rashba effects in solids, especially in surfaces and interfaces between

different materials [97]. The Hamiltonian, known as Rashba Hamiltonian, can be

written as,

HR =
p2

2m
12×2 + λ(∇V × ppp) · ~σ

=
p2

2m
12×2 + λ(σypx − σxpy) . (4.14)
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Figure 4.3: Rashba splitting and spin-polarization.

The eigen energy is given by E± = ~2k2

2m
± λk and k is the in-plane momentum.

We can obtain the spin-polarization by taking the expectation of the spinors ~σ with

respect to the eigenstates ψI〉 and ψII〉. Unlike the Zeeman splitting, electrons are

spin-polarized in clockwise and anti-clockwise directions. The ratio between energy

splitting and the momentum shift is known as the Rashba coupling λ = 2ERashba/kR

and the spin-texture is given by

〈ψI,II|σ̂|ψI,II〉 = ±|λ|
λ

(sinφ,− cosφ, 0) (4.15)

The schematics of the spin-splitting due to external fields are shown in fig. 4.2. Fig-

ure 4.3 shows the Rashba splitting in a 3D plot and the spin-polarizations. These

simple pictures of applying external fields to 2D electron gas give some qualitative
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understanding on spin-splitting in solids. This approach however is is only phe-

nomenological. A tight-model approximation should be carried to get a more realis-

tic description of the energy splitting in solids [97]. In the next section, we will show

that from a tight-binding framework we will obtain a Hamiltonian that resembles

the Rashba Hamiltonian.

4.3.2 M Point

We first look around the M point kx = ky = π/a. To the leading order in q, the

hopping matrix K̃ is given by,

K̃ = 4α2∆


0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0



− a
√

2αq


0 V

(1)
spσe−iφ V

(1)
spσeiφ 0

V
(2)
spσeiφ 0 0 γ∆eiφ

V
(2)
spσe−iφ 0 0 γ∆e−iφ

0 −γ∆e−iφ −γ∆eiφ 0


, (4.16)

where φ is the angle measured from the x̂ direction. At q = 0 (kx = ky = π/a),

the Hamiltonian decomposes into several uncoupled blocks with the corresponding

bases:

Hm,±
s = Es

m : |0, 0〉 ⊗ |±〉 ⊗ |m〉 ,

Hmn,±
p =


Ep
m − Tm

2
Tm√

2
∓4iα2∆

Tm√
2

Ep
m 0

±4iα2∆ 0 Ep
n + Tn

2

 :


|m〉 ⊗ |1,±1〉 ⊗ |∓〉

|m〉 ⊗ |1, 0〉 ⊗ |±〉

|n〉 ⊗ |1,∓1〉 ⊗ |∓〉

 , (4.17)
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where m 6= n labels the sublattices and the middle |±〉 ket denotes the spin state.

Using the direct sum notation, we can write down the total Hamiltonian as H =

HA,+
s ⊕HA,−

s ⊕HB,+
s ⊕HB,−

s ⊕HAB,+
p ⊕HAB,−

p ⊕HBA,+
p ⊕HBA,−

p .

From Hs, we see that for a given m, the eigenstates are spin-degenerate. The

degeneracy becomes four-fold if the atoms of sublattices A and B are the same,

leading to Ep
A = Ep

B. Equation (4.16) shows that at finite q there is no coupling

between the degenerate |0, 0〉 states that is linear in momentum. This means that

the bands composed of s orbitals have local extrema at the M point.

Next, we turn to Hp from Eq. (4.17). Just like for Hs, the bands are doubly

or four-fold degenerate depending on whether the sublattices are composed of the

same atomic species. Without making assumptions about the lattice composition,

the general form of the degenerate states is

|Ψ±〉mn = c0|m〉 ⊗ |1,±1〉 ⊗ |∓〉+ c1|m〉 ⊗ |1, 0〉 ⊗ |±〉

± ic2|n〉 ⊗ |1,∓1〉 ⊗ |∓〉 , (4.18)

with c0, c1, and c2 real. At finite q,

mn〈Ψ+|H|Ψ−〉mn = −a sin 2θc1c2

(
∆iqe−iφ

)
εmn , (4.19)

where εAB = −εBA = 1 is the two-dimensional Levi-Civita symbol. This coupling

between the degenerate states leads to an effective Rashba-like Hamiltonian:

Hmn
eff = a sin 2θc1c2∆εmn [(q× σσσ) · ẑ] :

|Ψ+〉mn

|Ψ−〉mn

 ., (4.20)
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or in the matrix form

Heff =

 0 −iλ(qx − iqy)

iλ(qx + iqy) 0

 , (4.21)

We use values of c0, c1, and c2 obtained from DFT results. To give better physical

pictures of these coefficients, we will solve the Hamiltonian Eq. 4.17. We treat the

spin orbit interaction (SOI) as perturbations and we will assume that Tm � Tn where

m is the index denoting Pb with strong SOI and n denotes weak SOI of chalcogen

atom. Focusing on Hmn,+
p , Eq. 4.17 becomes

Hmn,+
p =


Ep
m 0 −4iα2∆

0 Ep
m 0

4iα2∆ 0 Ep
n

 :


|m〉 ⊗ |1, 1〉 ⊗ |−〉

|m〉 ⊗ |1, 0〉 ⊗ |+〉

|n〉 ⊗ |1,−1〉 ⊗ |−〉

 , (4.22)

and the perturbation

δHmn,+
p =


−Tm

2
Tm√

2
0

Tm√
2

0 0

0 0 0

 :


|m〉 ⊗ |1, 1〉 ⊗ |−〉

|m〉 ⊗ |1, 0〉 ⊗ |+〉

|n〉 ⊗ |1,−1〉 ⊗ |−〉

 . (4.23)

We first solved Eq. 4.22 to find the eigenvalues and eigenvectors and used first order

perturbation theory to obtain the corrections to the eigenvectors. Using MATHE-

MATICA, we found to the first order in Tm that

|c1c2| '
Tm(Ep

m − Ep
n +

√
(Ep

m − Ep
n)2 + 64α4∆2)

8
√

2α2∆(Ep
n − Ep

m +
√

(Ep
m − Ep

n)2 + 64α4∆2)
. (4.24)

Recall that we defined Rashba parameter λ ≡ a sin 2θ∆c1c2. From Eq. 4.24 we see

that |c1c2| weakly depends on strains. For this reason, in the main text we assumed
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c1 and c2 are constant and the corrections to λ come mostly from ∆ and θ.

4.3.3 Γ Point

Next, we move to the Γ point at the center of the Brillouin zone. Unlike the M

point, the Rashba-like dispersion appears only for heterogeneous lattices. Moreover,

because of the band composition and the required coupling between different orbitals,

the splitting here will generally be weaker than at the M point.

As before, we start by obtaining the simplified effective Hamiltonian. Here, K̃

does not undergo such a drastic simplification as at the corner of the Brillouin zone:

K̃ = 4


Vssσ 0 0 −γV (1)

spσ

0 Vppπ + α2∆ 0 0

0 0 Vppπ + α2∆ 0

γV
(2)
spσ 0 0 Vppπ + γ2∆



− 2
√

2iαq


0 V

(1)
spσeiφ −V (1)

spσe−iφ 0

−V (2)
spσe−iφ 0 0 −γ∆e−iφ

V
(2)
spσeiφ 0 0 γ∆eiφ

0 −γ∆eiφ γ∆e−iφ 0


. (4.25)

For q = 0, we get the following uncoupled Hamiltonian blocks:

H±1 =



Esm 0 0 4Vssσ 0 −4γV
(1)
spσ

0 Epm − Tm

2
Tm√
2

0 4Vppπ + 4α2∆ 0

0 Tm√
2

Epm 4γV
(2)
spσ 0 4Vppπ + 4γ2∆

4Vssσ 0 4γV
(2)
spσ Esn 0 0

0 4Vppπ + 4α2∆ 0 0 Epn − Tn

2
Tn√
2

−4γV
(1)
spσ 0 4Vppπ + 4γ2∆ 0 Tn√

2
Epn


:

(4.26)
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

|m〉 ⊗ |0, 0〉 ⊗ |±〉

|m〉 ⊗ |1,±1〉 ⊗ |∓〉

|m〉 ⊗ |1, 0〉 ⊗ |±〉

|n〉 ⊗ |0, 0〉 ⊗ |±〉

|n〉 ⊗ |1,±1〉 ⊗ |∓〉

|n〉 ⊗ |1, 0〉 ⊗ |±〉


,

H±2 =

 Epm + Tm

2 4Vppπ + 4α2∆

4Vppπ + 4α2∆ Epn + Tn

2

 :

|m〉 ⊗ |1,±1〉 ⊗ |±〉

|n〉 ⊗ |1,±1〉 ⊗ |±〉

 . (4.27)

Same as before, the blocks are doubly-degenerate. The total Hamiltonian can be

written as H = H+
1 ⊕H−1 ⊕H+

2 ⊕H−2 . From Eq. (4.25), one can see that at finite k,

only Lz = 0 and Lz 6= 0 are coupled. This means that the degenerate eigenstates of

H2 blocks remain uncoupled since they are composed exclusively of Lz 6= 0 states.

The case of H2 is slightly more complicated. The general form of the degenerate

wave functions is

|Ψ±〉 = aA|m〉 ⊗ |0, 0〉 ⊗ |±〉+ bA|m〉 ⊗ |1,±1〉 ⊗ |∓〉+

+ cA|m〉 ⊗ |1, 0〉 ⊗ |±〉+ aB|n〉 ⊗ |0, 0〉 ⊗ |±〉+

+ bB|n〉 ⊗ |1,±1〉 ⊗ |∓〉+ cB|n〉 ⊗ |1, 0〉 ⊗ |±〉 . (4.28)

Similarly to the M point, here we get

〈Ψ+|H|Ψ−〉 = 4
√

2iαqe−iφ×[
aAbBV

(1)
spσ + aBbAV

(2)
spσ + γ∆ (cBbA − cAbB)

]
. (4.29)

Despite being somewhat more elaborate compared to Eq. 4.20, Eq. 4.29 has the

same form. The main difference between the two points of the Brillouin zone ap-

pears when the atoms of both sublattices are the same. In this case, V
(1)
spσ = V

(2)
spσ.
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Additionally, aA = −aB, bA = bB, and cA = cB, leading to a vanishing matrix ele-

ment in Eq. (4.29). Thus, unlike the M point, where having a lattice composed of a

single atomic type eliminates the spin texture while preserving the linear dispersion,

Rashba-like dispersion at the Γ point requires two different atomic species.

4.4 Magnetic Field

Let us now try to include external fields to the system. The magnetic field can be

included via the Peierls substitution so that q → q − eA/c, where A is the vector

potential. In addition, applying an external magnetic field leads to the interaction

of the electron angular momentum with the field.

The total magnetic moment of an electron is given by

µ = −µB
L + 2S

~
, (4.30)

so that

B · µ = −µB
Bx

(
L++L−

2
+ S+ + S−

)
+By

(
L+−L−

2i
+ S+−S−

i

)
+Bz (Lz + 2Sz)

~
.

(4.31)

Setting B =
(
B‖ cos τ, B‖ sin τ, B⊥

)
gives

B · µ =− µB
B‖ cos τ

(
L++L−

2
+ S+ + S−

)
− iB‖ sin τ

(
L+−L−

2
+ S+ − S−

)
~

+
B⊥ (Lz + 2Sz)

~
(4.32)

=− µB
B‖

[
e−iτ

(
L+

2
+ S+

)
+ eiτ

(
L−
2

+ S−

)]
+B⊥ (Lz + 2Sz)

~
. (4.33)
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The first term ∝ B‖ introduces coupling between |Ψ+/−〉 while the last term ∝ B⊥

modifies and breaks the symmetry between the degenerate states. Starting with last

term, we get

〈Ψ+|B · µ|Ψ+〉 = −〈Ψ−|B · µ|Ψ−〉 = −µBB⊥
(
c2

1 − 2c2
2

)
. (4.34)

Next, we apply the first term onto |Ψ+〉:

− µB
B‖

[
e−iτ

(
L+

2 + S+

)
+ eiτ

(
L−
2 + S−

)]
~

(c0|m〉 ⊗ |1, 1〉 ⊗ |−〉+ c1|m〉 ⊗ |1, 0〉 ⊗ |+〉

+ ic2|n〉 ⊗ |1,−1〉 ⊗ |−〉) =

=− µBB‖
[
e−iτ c0|m〉|1, 1〉|+〉+ e−iτ

c0√
2
|m〉|1, 0〉|−〉+ e−iτ

c1√
2
|m〉|1, 1〉|+〉

+ eiτ
c1√

2
|m〉|1,−1〉|+〉+ eiτ c1|m〉|1, 0〉|−〉+ e−iτ i

c2√
2
|n〉|1, 0〉|−〉+ eiτ ic2|n〉|1,−1〉|+〉

]
=− µBB‖

[
eiτ (

c0√
2

+ c1)|m〉|1, 0〉|−〉+ e−iτ (c0 +
c1√

2
)|m〉|1, 1〉|+〉+ c1e

iτ c1|m〉|1,−1〉|+〉

+ e−iτ i
c2√

2
|n〉|1, 0〉|−〉+ eiτ ic2|m〉|1,−1〉|+〉

]
(4.35)

Now, we apply 〈Ψ−| onto Eq. (4.35). We see that the states on |n〉 drop out. The

remaining states yield

〈Ψ−|B · µ|Ψ+〉 = −µBB‖eiτ
[
c1

(
c0√

2
+ c1 + c0

)]
. (4.36)

Thus, our general Hamiltonian becomes

H = λ

[(
q− eA

c

)
× σσσ

]
· ẑ +m⊥σzB⊥ +m‖B‖ · σ‖ (4.37)

where m⊥ = −µB(c2
1− 2c2

2) and m‖ = −µB
[
c1

(
c0√

2
+ c1 + c0

)]
. We indeed find that

the electron couples to magnetic field ∝ B · σσσ. The strength of coupling however is
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not isotropic and it depends on the orbital character. Interestingly, m⊥ depends on

the wavefunction coefficients of atom m with out-of-plane orbital number and atom

n with in-plane orbital number, while m‖ depends on the wavefunction coefficients

of same atoms but with different orbital orientations (see Eq. 4.18). This suggests

that by changing the geometry or the atomic compositions we can tune the relative

strength of in-plane and out-of-plane couplings.

4.5 In-Plane Field

If the field is in-plane, the Hamiltonian is given by

H =

 0 iλqeiφ + Be−iτ

−iλqe−iφ + Beiτ 0

 = λ

 0 iqeiφ + B
λ
e−iτ

−iqe−iφ + B
λ
eiτ 0

 ,

(4.38)

where we have defined B ≡ m‖B‖. The eigenvalues become

E = ±λ

√(
qx −

B
λ

sin τ

)2

+

(
qy −

B
λ

cos τ

)2

. (4.39)

Applying an in-plane magnetic field shifts the cone in the Brillouin zone.

Let us take a closer look at the Hamiltonian:

H = λ

 0 i
[(
qx − Bλ sin τ

)
+ i
(
qy − Bλ cos τ

)]
−i
[(
qx − Bλ sin τ

)
− i
(
qy − Bλ cos τ

)]
0


= λ

 0 ipeiξ

−ipe−iξ 0

 . (4.40)
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The eigenstates are

|I〉 =
|Ψ+〉+ ie−iξ|Ψ−〉√

2
,

|II〉 =
|Ψ+〉 − ie−iξ|Ψ−〉√

2
. (4.41)

Now we can obtain the in-plane spin texture for the cones. First, it is easy to

show that

〈ΨI|σx/y|ΨI〉 = 〈ΨII|σx/y|ΨII〉 = 0 . (4.42)

Next,

〈ΨII|σx|ΨI〉 = c2
1〈+|σx|−〉 = c2

1 ,

〈ΨII|σy|ΨI〉 = c2
1〈+|σy|−〉 = −ic2

1 . (4.43)

This leads to

〈I|σx|I〉 =
−ieiξ

2
c2

1 +
ie−iξ

2
c2

1 = −ic
2
1

2

(
eiξ − e−iξ

)
= c2

1 sin ξ ,

〈I|σy|I〉 = −ic2
1

−ieiξ

2
+ ic2

1

ie−iξ

2
= −c2

1

eiξ

2
− c2

1

e−iξ

2
= −c2

1 cos ξ ,

〈II|σx|II〉 =
ieiξ

2
c2

1 +
−ie−iξ

2
c2

1 = −c2
1 sin ξ ,

〈II|σy|II〉 = ic2
1

−ieiξ

2
− ic2

1

ie−iξ

2
= c2

1 cos ξ . (4.44)

As a result, the spin texture becomes:

〈I|σ̂|I〉 = c2
1 (x̂ sin ξ − ŷ cos ξ) ∝ (x̂py − ŷpx) ,

〈II|σ̂|II〉 = −c2
1 (x̂ sin ξ − ŷ cos ξ) ∝ − (x̂py − ŷpx) . (4.45)
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Recall that

px = qx −
λ

~v
sin τ ,

py = qy −
λ

~v
cos τ . (4.46)

This means that spin contours now revolve not around the q = 0 point but instead

around a p = 0 point.

4.6 Landau Levels

For the transverse magnetic field Bẑ, we have A = Bxŷ, leading to

H = ~v

 M ikx −
(
ky − eB

~c x
)

−ikx −
(
ky − eB

~c x
)

−M

 . (4.47)

Since the gauge field is x dependent, we can focus on the part of wavefunction

that has x dependent. From this, we can write

HΨ = ~v

 M ikx + eB
~c x

−ikx + eB
~c x −M

ψ1(x)

ψ2(x)

 = E

ψ1(x)

ψ2(x)

 ,

[
ikx +

eB

~c
x

]
ψ2(x) =

(
E

~v
−M

)
ψ1(x) ,[

−ikx +
eB

~c
x

]
ψ1(x) =

(
E

~v
+M

)
ψ2(x) . (4.48)

Combining the last two equations yields, the left hand side becomes

[
−ikx +

eB

~c
x

] [
ikx +

eB

~c
x

]
ψ2(x) =

[
k2
x + i

eB

~c
(xkx − kxx) +

(
eB

~c

)2

x2

]
ψ2(x) ,
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and the right hand side becomes

(
E

~v
−M

)(
E

~v
+M

)
ψ2(x) =

[(
E

~v

)2

−M2

]
ψ2(x) .

We then can solve ψ2(x),

[
k2
x +

(
eB

~c

)2

x2

]
ψ2(x) =

[(
E

~v

)2

−M2 +
eB

~c

]
ψ2(x) ,

ψ2(x) = D
( E~v )

2
−M2

2 eB~c

[√
2eB

~c
x

]
. (4.49)

And similarly we can solve ψ1(x),

[
k2
x +

(
eB

~c

)2

x2

]
ψ1(x) =

[(
E

~v

)2

−M2 − eB

~c

]
ψ1(x) ,

ψ1(x) = D
( E~v )

2
−M2−2 eB~c
2 eB~c

[√
2eB

~c
x

]
. (4.50)

This leads to

(
E
~v

)2 −M2

2 eB~c
= n→

(
E

~v

)2

= 2
eB

~c
n+M2 , (4.51)(

E
~v

)2 −M2 − 2 eB~c
2 eB~c

= m→
(
E

~v

)2

= 2
eB

~c
(m+ 1) +M2 , (4.52)

ψ1(x) = Dm

[√
2eB

~c
x

]
= 2−m/2 exp

[
−1

2

eB

~c
x2

]
Hm

[√
eB

~c
x

]
,

(4.53)

where Hm is the Hermite polynomials.
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Finally, we obtain

(
E

~v

)2

−M2 +
eB

~c
=
eB

~c
(2n+ 1)→ E = ±~v

√
2eB

~c
n+M2 , (4.54)(

E

~v

)2

−M2 − eB

~c
=
eB

~c
(2n+ 1)→ E = ±~v

√
2eB

~c
(n+ 1) +M2 . (4.55)

Combining the last two equations yields

[
k2
x +

(
eB

~c

)2

x2

]
ψ2(x) =

eB

~c
[2n+ 1]ψ2(x) ,[

k2
x +

(
eB

~c

)2

x2

]
ψ1(x) =

eB

~c
[2n− 1]ψ1(x) . (4.56)

Finally, we get

(
E

~v

)2

−M2 +
eB

~c
=
eB

~c
(2n+ 1)→ E = ±~v

√
2eB

~c
n+M2 , (4.57)(

E

~v

)2

−M2 − eB

~c
=
eB

~c
(2n+ 1)→ E = ±~v

√
2eB

~c
(n+ 1) +M2 , (4.58)

where n = 0, 1, 2· similar to the values in Harmonic oscillator. First we find that

for n = 0 only one of the electron with spin up (or down depending on direction

of magnetic field) occupies the lowest energy. In the vicinity of the M point, we

expect PbX to have Landau level with a
√
n energy spacing which is similar to

graphene [98]. Landau level of Dirac electrons in 3D Rashba materials have also

been observed experimentally [99]. This shows the promise of using the helical spin

polarization of non-degenerate Dirac electrons to develop new spintronics.
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Chapter 5

Two-dimensional Square Buckled Rashba

Lead Chalcogenides

In this chapter we propose the lead sulphide (PbS) monolayer as a 2D semiconductor

with a large Rashba-like spin-orbit effect controlled by the out-of-plane buckling.

The buckled PbS conduction band is found to possess Rashba-like dispersion and

spin texture at the M and Γ points, with large effective Rashba parameters of λ ∼

5 eVÅ and λ ∼ 1 eVÅ, respectively. Using a tight-binding formalism, we show

that the Rashba effect originates from the very large spin-orbit interaction and the

hopping term that mixes the in-plane and out-of-plane p orbitals of Pb and S atoms.

The latter, which depends on the buckling angle, can be controlled by applying

strain to vary the spin texture as well as the Rashba parameter at Γ and M . Our

density functional theory results together with tight-binding formalism provide a

unifying framework for designing Rashba monolayers and for manipulating their spin

properties.

The work presented in this chapter (with slight modifications) has been published

in:

• P. Z. Hanakata, A. S. Rodin, A. Carvalho, H. S. Park, D. K. Campbell,

A. H. C. Neto,“Two-dimensional square buckled Rashba lead chalcogenides”

Physical Review B 96 (16), 161401(R) (2017).
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5.1 Introduction

Over the past two decades there has been a growing interest in materials with strong

spin-orbit interaction (SOI), as they are of a profound importance for fundamental

understanding of quantum phenomena at the atomic level and applications to spin-

tronics. This relativistic interaction is linked to important effects such as Rashba,

Zeeman, spin-Hall effect, and topological insulator (TI) states [100, 101, 102, 103].

The spin-orbit splitting of the bands occurs in crystals without inversion symme-

try, where it is known as Dresselhaus effect and in 2D structures or surfaces, where it

is known as Rashba effect, even though these can be seen as different manifestations

of the same phenomenon [104]. However, suitable atomically thin 2D materials with

a large Rashba coefficient are hard to find. To have Rashba-type spin splitting there

are two key properties that should present: strong SOI and broken inversion symme-

try. In graphene and non-polar two-dimensional materials, such as transition metal

dichalcogenides, breaking inversion symmetry is often achieved by application of out-

of-plane electric fields or through interfacial effects [105, 106, 107]. Unfortunately,

the respective spin splitting in graphene is rather small, rendering the spin polariza-

tion unusable at room temperature. Group IV and III-V binary monolayers (e.g SiGe

and GaAs) with buckled hexagonal geometry were found to have a Rashba-like spin

texture; the band splitting, however, has a Zeeman-like splitting [108]. Spin-splitting

in WSe2 monolayer is also of Zeeman-type due to the out-of plane mirror symmetry

(Mz : z → −z) suppressing the Rashba term [106]. Transition metal dichalcogenides

with asymmetric surfaces, e.g. WSeTe, have a sizeable Rashba splitting, but this does

not coincide with the direct bandgap [109]. A Rashba-type effect has been measured

in few-layer samples of the topological insulator Bi2Se3, but this is attributed to the

interactions with the substrate [110].

Recently, we proposed that a Rashba-like splitting can also be obtained in bucked
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heavy metal square lattices, where it is controlled by out-of-plane buckling and/or

electric dipole [36]. However, materials in this class are almost always metals, which

reduces the ways in which spins can be manipulated.

In addition to study of spin splitting and texture in materials with strong SOI, sev-

eral works have also investigated the orbital switching in topological insulators [111,

112] and in hexagonal 3D Rashba semiconductors [113, 114]. Specifically, Cao et al.

found that below the Dirac point the wavefunctions are more radial while above the

Dirac point the wavefunctions are more tangential [111]. However, further studies

for materials with different geometry (e.g square) are still lacking.

Very recently, several studies have investigated topological properties of the rock

salt structure materials, such as PbX (X=Se, S, Te), in both monolayer and bilayer

forms with no buckling [102, 103, 115]. In particular, Chang et al. have successfully

grown few-layer SnTe and PbTe [116] 1. In this article, we study two-dimensional

(2D) lead chalcogenide PbX (X=S, Se, Te) monolayers in square geometry with two

atoms per primitive cell. For definiteness, we focus on lead sulfide PbS, but similar

effects can be found for other lead chalcogenides and even heavy metals [36].

Using density functional theory (DFT), we find that buckled PbS monolayer

possesses a strong Rashba splitting. In this polar material, the buckling direction

can be reversed, leading to the reversal of the spin texture. Based on our DFT

results we develop a tight binding formulation of the buckled and planar 2D square

lattice for PbS which is generally applicable for other similar materials (e.g, PbSe

and PbTe). With this formalism, we are able to understand how the Rashba spitting

depends on SOI strength, which in turn depends on the atomic species and the

buckling angle, similar to the case of heavy metal square lattices [36]. Moreover,

our theory provides a new understanding of how spins and orbitals are coupled and

1Chang et al. reported PbTe data in the supplementary section.
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Figure 5.1: (a) Structural visualizations of buckled PbX monolayer. Buckling an-
gle θ = 0 (β = 0) for planar structure. Blue and orange arrows indicate vectors
connecting Pb and its first and second nearest neighbors, respectively and (b) the
corresponding Brillouin zone.

how they can be controlled. These all together provide guidelines for designing and

manipulating orbital-spin effects in Rashba monolayers.

5.2 Methods

The structural visualization of buckled PbX is shown in fig. 5.1. Our findings are

based on density functional theory (DFT) calculations implemented in the Quan-

tum ESPRESSO package [82]. We employed Projector Augmented-Wave (PAW)

type pseudopotentials with Perdew-Burke-Ernzerhof (PBE) within the generalized

gradient approximation (GGA) for the exchange and correlation functional [117].

The Kohn-Sham orbitals were expanded in a plane-wave basis with a cutoff en-

ergy of 100 Ry, and for the charge density a cutoff of 200 Ry was used. A k-point

grid sampling grid was generated using the Monkhorst-Pack scheme with 16×16×1

points [84], and a finer regular grid of 40×40×1 was used for spin texture calcula-

tions. We used the modern theory of polarization [85] to calculate the spontaneous

polarization implemented in the Quantum ESPRESSO package [82]. Input files

can be found in A.0.3. To compare the electric polarization of monolayer PbS to
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the typical bulk ferroelectrics, we approximate the thickness as twice the distance

between S and Pb atom which is roughly half of the lattice constant of bulk PbS.

Similar approximations have also been used in other several works [32, 118, 119].

For electronic band structure calculations, the spin orbit interaction was included

using noncollinear calculations with fully relativistic pseudopotentials. To apply

biaxial strains, we varied the in-plane lattice constants and let the system relax until

the stress perpendicular to the plane is less than 0.01 GPa.

We used the modern theory of polarization to calculate electric polarization[85]

~P =
1

V

∑
τ

qion
τ Rτ −

2ie

(2π)3

occ∑
n

∫
BZ

d3ke−i
~k·R
〈

Ψnk

∣∣∣∂Ψnk

∂k

〉
, (5.1)

where qτ is the ionic charge plus the core electrons, Rτ is the position of ions, V is the

unit cell volume, e is the elementary charge, n is the valence band index, k is the wave

vector, and Ψnk is the electronic wave function. The first term is the contribution

from core electrons and ions, and the second term is the electronic contribution

defined as the adiabatic flow of current, which can be calculated from the Berry

phase (BP) [85]. The spontaneous polarization is calculated by taking the difference

between the polarization of the polar (buckled) state and the non-polar (reference)

state, ∆ ~P = ~Ppolar − ~Pnon−polar. To calculate the electric polarization of monolayer

PbS, we estimate the thickness as twice the distance between S and Pb atom which

is roughly half of the lattice constant of bulk PbS. Similar approximations have also

done in other several works [32, 118, 119].The calculated spontaneous polarizations of

path I (optimized buckled lattice parameters) and path II (optimized planar lattice

parameters) are 0.2 C/m2 and 0.1 C/m2, respectively.

Here we tabulate the optimized geometrical parameters of buckled PbX (X=S,

Se, and Te) monolayers.
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Table 5.1: Lattice constant a, buckling angle θ, buckling height dz, and nearest-
neighbor bond distance d.

a Å θ(◦) dz Å d Å

PbS 3.74 21.6 1.04 2.84
PbSe 3.82 24.4 1.22 2.96
PbTe 4.01 26.3 1.40 3.16

5.3 Structure, bistability, and ferroelectricity
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Figure 5.2: Potential energy surface of PbS as a function of distance dz with (a) fixed
buckled lattice parameters and (b) fixed planar lattice parameters.

Our first principles calculations show that PbX monolayer has a buckled structure
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(see fig. 5.2), which is a minimum of the energy surface, whereas the planar structure

is a saddle point of the energy surface. We found that the optimized buckled structure

of PbS has a lower enthalpy of 120 meV compared to that of optimized planar

structure. The lattice constant a and buckling angle θ for buckled (planar) structure

are 3.74Å (4.01Å) and 21.6◦ (0◦), respectively. The optimized planar lattice constant

is close to the value reported in study of planar PbS [115].

The potential energy barriers in ferroelectric materials are usually strain depen-

dent. For instance, Wang and Qian have shown that energy barriers in ferroelectric

SnS, SnSe, GeS, and GeSe monolayers may increase or decrease depending on the

strains [119].

The energy barrier between the planar (paraelectric) and buckled (ferroelectric) is

obtained by displacing the Pb and S atoms in the z direction while keeping the lattice

parameters fixed at the values optimized for the the buckled (ferroelectric) phase.

We vary dz = z(Pb) − z(S) with the fixed optimized ferroelectric (buckled) lattice

parameters, the energy barrier is 764 meV and the spontaneous polarization is ∆ ~P =

0.2 C/m2. Since the calculation is carried out keeping the lattice parameters fixed

at the values optimized for the buckled phase, the relative energy of the paraelectric

phase is overestimated (see fig. 5.2 (a)). In addition, we also do the same procedure

but using the paraelectric (planar) phase as the initial configuration. When the

lattice parameters are fixed at the optimized paraelectric phase, the energy barrier

is 51 meV and the spontaneous polarization is ∆ ~P = 0.1 C/m2, shown in fig. 5.2

(b)). In either case, we find that the planar structure is a saddle point.

We approximate the energy surface to a fourth order polynomial function [120]

E = η1P2 + η2P4 (5.2)
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Knowing ∆P and the Ebarrier, we obtain η1 = 2Ebarrier

∆P2 and η2 = −Ebarrier

P4 . Next we

introduce the electric enthalpy F = E − EP , where E is the electric field we the can

calculate the coercive field Ec = (4/3)(3/2)Ebarrier/∆P . The calculated coercive field

with the starting configuration from paraelectric (planar) and ferroelectric (buckled)

are, ∼ 1 V/nm and ∼ 10 V/nm respectively. Applied electric fields of ∼ 1 V/nm are

achievable in current 2D experiments [93]. This suggests that PbS is suitable for a

ferroelectric device as long as it is grown in planar phase.

5.4 Band structure

Next we compare the band structure of planar PbS (PbS-p) and buckled PbS (PbS-

b). PbS-p is a direct gap semiconductor with a small bandgap of 0.2 eV. Because

of the inversion symmetry, no spin-splitting is observed. PbS-b is an indirect-gap

semiconductor in which the minimum energy of the lowest conduction band is located

near theM -point and the maximum energy of the highest valence band is located near

the Γ-point (see fig. 5.3). At both the M and Γ points, the conduction band shows

a sizable Rashba splitting. The effective Rashba parameters, given by λ = 2ER/kR,

where ER is the difference between the lowest energy of upper band and lower band,

kR is the shift in momentum space relative to the cone axis, are λ = 1.03 eVÅ at Γ

(fig. 5.4(a)) and λ = 5.10 eVÅ at M (fig. 5.4 (b)). These values are comparable to

those of three-dimensional (3D) giant Rashba materials [100, 101, 121].

5.5 Origin of the Spin Splitting: A Tight-binding Formula-

tion

Next, we use tight binding formalism as a framework to understand the Rashba effects

in lead chalcogenide monolayers. We first need to find the relevant orbitals.The ab
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Figure 5.3: Band structure of monolayer PbS in planar (a) and buckled structure (b)
along the high symmetry lines of Brillouin zone. Green lines indicate Fermi energy.
There is no splitting in the planar structure because of inversion symmetry. In
contrast, there is no mirror-plane in z for buckled structure resulting broken inversion
symmetry, and this leads to band-splitting. The calculated Rashba parameter at Γ
(M) gives rise to a larger energy splitting between bands than other giant Rashba
materials. Rashba-like dispersion at Γ (c) and M point (d).

initio calculations reveal a fairly complicated band structure with multiple local

minima in the conduction band and a fairly flat valence band. In order to better

understand the origin of the band structure, we turn to the tight-binding model.

Numerical calculations show that the relevant bands are composed almost exclu-

sively of s and p orbitals of the constituent atoms, with d appearing in lower-energy

valence bands, allowing us to neglect them (see fig. 5.5). The lowest conduction band
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Figure 5.4: Rashba-like dispersion at Γ (a) and M point (b) of buckled PbX mono-
layer.

consists mostly the p orbitals of the Pb atom while the highest valence band consists

mostly the p orbitals of the S atom.

This means that each atom introduces four (one s and three p) orbitals. While it

is convenient to use px and py orbitals to write down the hopping elements, since we

are including SOI in our model, it is helpful to go to a basis which is more natural

for the angular momentum operators. We transform the basis as follows:

|1, 1〉 = (−|px〉+ i|py〉)/
√

2 and|1,−1〉 = (|px〉+ i|py〉)/
√

2. (5.3)

The new basis then for each 4 × 4 block is |0, 0〉, |1, 1〉, |1,−1〉, and |1, 0〉, where
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the first number represents the orbital momentum quantum number and the second

one is the projection along the z direction. We have carried detailed derivations in

chapter 4. In this chapter, we will focus on the M point. Some of the notations are

slightly different from the previous chapter.

The first high-symmetry point that we examine is theM -point, located at (π/2, π/2)

in the Brillouin zone. At the M -point the full Hamiltonian H can be decomposed

into several blocks, and the Hamiltonian describing the two lowest conduction bands

(C1, C2) and the third valence band (V3) is given by

H1 =
(
εPb
s

)
, H2 =

(
εS
s

)
, (5.4)
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Ha =


εPb
p + TPb

2
0 ±4iα2∆

0 εS
p

TS√
2

∓4iα2∆ TS√
2

εS
p − TS

2

 , (5.5)

Hb =


εS
p + TS

2
∓4iα2∆ 0

±4iα2∆ εPb
p − TPb

2
TPb√

2

0 TPb√
2

εPb
p

 . (5.6)

At the M -point, the degenerate wave functions (labeled as 1 and 2) describing
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the lowest conduction band C1 are given by

|Ψ1〉 = iA|1, 1〉 ⊗ | ↑〉S +B|1,−1〉 ⊗ | ↑〉Pb + C|1, 0〉 ⊗ | ↓〉Pb

|Ψ2〉 = −iA|1,−1〉 ⊗ | ↓〉S +B|1, 1〉 ⊗ | ↓〉Pb + C|1, 0〉 ⊗ | ↑〉Pb , (5.7)

where A, B and C are real numbers. The other block Ha describing the highest

valence (V1) band has a very similar form to Eq. 5.6, but where Pb and S are

interchanged.

The degeneracy breaking term γ is given by

γ = 〈Ψ1|H|Ψ2〉 = 2i sin (2θ) ∆keiφAC , (5.8)

where θ is the structure buckling angle, where ∆ = Vppσ − Vppπ (V is the hop-

ping parameter between S and Pb atom, see Supplemental Material), and keiφ =

kx + iky. This leads to a linear dispersion for small k, as expected. Defining

λ ≡ 2 sin (2θ) ∆AC, we can write the effective Hamiltonian describing the lowest

conduction band as

Heff = λ[~k × ~σ] · ẑ, (5.9)

where ~σ = (σx, σy, σz), which is the Rashba Hamiltonian. The eigenstates are

|ψI,II〉 = |Ψ1〉 ± e−iφ |λ|λ |Ψ2〉.

It is clear from Eq. 5.6 that the SOI mixes the pz orbital with other in-plane

orbitals of atoms with same species; however SOI by itself does not lift the degeneracy

because SOI is independent of k. For instance, the band structure of planar PbS

obtained by DFT, including the SOI, does not show spin-splitting [Fig. 5.3 (a)]. The

inversion symmetry breaking term originated from the buckling couples the pz of Pb

and the in-plane p orbitals of S atoms; this term results in the spin-splitting with
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Figure 5.7: Evolution of band structure around Γ (a) and M (b) with application of
biaxial strains. Energy is subtracted by energy at Γ (M) for comparative purposes.
(b) λ scaled by its unstrained value λ0 as a function of sin 2θ. λ increases with in-
creasing buckling angle, which is consistent with tight-binding analysis. (c) Relative
changes in buckling angle θ and bond distance d as a function of biaxial strain ε.

Rashba-like dispersion (see Eq. 5.8). Taking TPb � TS and solving the Hamiltonian

Hb perturbatively, which we have shown in Chapter 4, to the first leading order,

AC ∼ TPb. These two consequences are consistent with our DFT results: spin-

splitting occurs when both SOI and θ are not zero.

While the same arguments hold for Ha, which describes the valence band, we

do not observe a substantial SOI-induced splitting in PbS (see Fig. 5.3(b)). This
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is because the sulphur atom has of a much smaller atomic SOI than the Pb atom,

leading to a weaker mixing of orbitals, suppressing the AC term in the equation

above. As shown in fig. 5.6, PbTe and PbSe, however, have large spin-splitting in

both the conduction and valence bands because Te and Se are relatively much heavier

than S (stronger SOI).

Similarly to the M point, one can perform a low-k expansion around the Γ point

for the Hamiltonian matrix (see Supplemental Material). Because there are more

non-vanishing coupling terms at the center of the Brillouin zone, the Hamiltonian

does not reduce as well to smaller independent blocks as it does at the M point.

Nevertheless, it is possible to show that in buckled structures, there is a linear term

breaking the degeneracy of the conduction band.

We have found the relevant parameters to tune the band splitting from the TB-

formulation. Clearly the hopping parameters depend on both the bond distance

and the buckling angle. Since these two quantities are often strain dependent, it is

natural to ask whether it is possible to tune the hopping parameters using strain.

Our DFT simulations showed that under biaxial strains the bond distance changes

by only 1% while buckling angle changes by roughly 30% at a biaxial strain of 6%

(shown in Fig. 5.7).

We obtain λ by taking the derivative of energy dispersion λ = ∂E
∂k

at Γ and

M . As shown in Fig. 5.7 (c), λ increases with increasing θ, consistent with our

TB formulation (see Eq. 5.8). Note that λ is not linear with sin 2θ because A and

C also depend on θ. Our DFT results show that, relative to its unstrained value

λ0, λ can increase by more than 20% when compressed by 4% or decrease by 20%

when stretched by 4%. The apparent variations of λ show that PbS is a tunable

spin-splitting material.
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Figure 5.8: (a) Band plots of the first (C1II) and second lowest (C1I) conduction
band near the Γ and M point. Clockwise (counter clockwise) spin textures are
represented by the yellow (green) arrows. Near the band crossing (inner Dirac cone),
the upper and lower band have opposing helical spin texture similar to the Rashba
spin texture. (b) Corresponding schematic orbital spin texture of Pb atom at M
point. The radial pr and tangential pt have opposite spin orientation, and they
cancel each other. Spin helicity is flipped after passing through the Dirac point
while the orbital compositions are still the same.

5.6 Spin and Orbital Texture

Lastly, we investigate the orbital texture of PbS as it has been shown that TIs and

hexagonal 3D Rashba materials have orbital switching at the Dirac point [111, 112,

113, 114]. To our best knowledge, such analysis has not been done for monolayers

with square symmetry. We can do such analysis by transforming our basis to radial

pr and tangential pt orbitals:

|1, 1〉 = −eiφ|pr〉+ i|pt〉 (5.10)

|1,−1〉 = e−iφ|pr〉 − i|pt〉 (5.11)

|1, 0〉 = |pz〉. (5.12)
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In this basis the upper and bottom wavefunctions can be written as

|ψI,II〉 =C|pz〉 ⊗ |±〉Pb ∓ i
B√

2
|pr〉 ⊗ |±〉Pb (5.13)

± B√
2
|pt〉 ⊗ |∓〉Pb ∓ i

A√
2
e−2iφ|pr〉 ⊗ |∓3〉S

± A√
2
e−2iφ|pt〉 ⊗ |±3〉S

where

|+n〉 =
1√
2

 |λ|λ ie−inφ
1

 (5.14)

is clockwise in-plane spin and

|−n〉 =
1√
2

− |λ|λ ie−inφ
1

 (5.15)

is counter clockwise in-plane spin.

In the upper band of PbS the radial component of the Pb atom couples to the

clockwise spin while the tangential component couples to the counter clockwise spin,

as shown schematically in Fig. 5.8. As it passes through the band crossing point

(Dirac point) right at the M point, where the upper band and lower band meet, the

tangential component now couples to the counter clockwise spin. This switching is

similar to what have been observed in TIs [111, 112] and hexagonal bulk Rashba

materials [113, 114]. The difference is that the radial and tangential components

contribute equally and cancel out, and thus the net in-plane spin texture comes from

the pz orbital only. This suggests that the orbital texture is not always polarized

and thus the orbital polarization depends on the crystal symmetry of the material.
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Figure 5.9: Two dimensional plot of spin polarizations near M . The color plot shows
the projection of spin along z direction. Clearly, the out-of-plane spin components
are small. The direction of spin polarizations is reversed when the buckling direction
is reversed.

From the TB results, we found that the direction of the spin is given by

〈ψI,II|σ̂|ψI,II〉 = ±|λ|
λ

(sinφ,− cosφ, 0) (5.16)

We can see that the spin texture is helical and depends on the direction of the buck-

ling (inversion symmetry breaking term λ). Notice that the PbS-b has a degenerate

structure as the polarization vector in z-direction define as dz = z(Pb) − z(S) can

be positive or negative (sign of λ), as shown in Fig. 5.9. Thus, the in-plane spin

texture can be reversed when λ is negative (PbS buckled in the opposite direction).

This is confirmed by our DFT results shown in Fig. 5.9. While the coefficients A, B,

and C in Eq. 5.7 are material dependent, the orbital texture is independent of the

direction of the buckling. These findings are in agreement with the very recent work

on hexagonal 3D Rashba BiTeI [113].



88

5.7 Summary

In summary, using first-principles calculations based on density functional theory,

we have found a new class of 2D materials (lead chalcogenides) possessing a tunable

giant Rashba splitting with a characteristic orbital and spin texture in an energy

range close to the bandgap edge. Based on our tight-binding analysis, we found that

the atomic composition and buckling angle are the two key parameters controlling

the Rashba effects. First, the atomic composition plays important role as the SOI

is the parameter that mixes the in-plane and out-of-plane orbitals. With the recent

success in creating janus (polar) transition metal dichalcogenide monolayers [122] and

few-layer SnTe and PbTe [116] via atomic layer deposition techniques, the growth of

buckled polar materials like PbS, PbSe, and PbTe should also be achievable using

existing technology.

In buckled PbS monolayers, the Rashba coefficient depends on the degree of

buckling, and the orientation of the helical in-plane spin depends on the direction

of the buckling. As we have shown in DFT simulations, this buckling can be con-

trolled through application of moderate strains of ≤ 10%, which are achievable in

the current 2D experiments [123, 124]. A similar system showing such tunability is

LaOBiS2 [125]. In addition to mechanical strains, the electric polarization (direction

of buckling) can be switched as PbS is ferroelectric. And thus PbS spin texture can be

switched in a non-volatile way which is similar to recently found ferroelectric Rashba

semiconductors (FERSC) GeTe [126, 126]. Further, we also found orbital-spin tex-

ture switching in buckled PbS. Our results suggest that the orbital-spin switching at

the Dirac point is not exclusive to TIs and the orbital texture is not always polarized,

as it depends on the crystal symmetry of the material. Our unifying framework based

on tight binding provides design principles and orbital-spin texture manipulations

which will be important for development of new devices.
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Chapter 6

Strain-induced Gauge and Rashba Fields

in Ferroelectric Rashba Lead

Chalcogenide PbX (X=S, Se, Te)

One of the exciting features of two-dimensional (2D) materials is their electronic

and optical tunability through strain engineering. In the previous chapter we have

introduced a new class of 2D ferroelectric Rashba semiconductors PbX (X=S, Se,

Te) with tunable spin-orbital properties. In this chapter, based on our previous

tight-binding (TB) results, we derive an effective low-energy Hamiltonian around

the symmetry points that captures the effects of strain on the electronic properties

of PbX. We find that strains induce gauge fields which shift the Rashba point and

modify the Rashba parameter. This effect is equivalent to the application of in-

plane magnetic fields. The out-of-plane strain, which is proportional to the electric

polarization, is also shown to modify the Rashba parameter. Overall, our theory

connects strain and spin-splitting in ferroelectric Rashba materials, which will be

important to understand the strain-induced variations in local Rashba parameters

that will occur in practical applications.

The work presented in this chapter (with some modifications) has been published

in:
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• P. Z. Hanakata, A. S. Rodin, H. S. Park, D. K. Campbell, A. H. C. Neto,

“Strain-induced gauge and Rashba fields in ferroelectric Rashba lead chalco-

genide monolayers PbX monolayers (X=S, Se, Te)” Physical Review B 97 (23),

235312 (2018). (2016).

6.1 Introduction

Monolayers and heterostructures of two-dimensional (2D) materials with spin-orbit

interaction offer promise for observing many novel physical effects [19, 97, 127]. In

particular, it has been proposed that topological insulators or semiconductors with

Rashba interactions coupled with superconductors may host Majorana fermions,

which are potential building blocks for topological quantum computers [33, 34].

In addition to 2D materials that exist in the hexagonal phase, such as graphene

and the transition metal dichalcogenides (TMDs), 2D materials with square lattices

have been successfully fabricated [116, 128]. Recently, the Rashba effect has been

observed in thin layers (6–20 nm) of lead sulfide (PbS) [128], where an external elec-

tric field is used to break the inversion symmetry. However, the spin-splitting is not

large. In our previous work based on density functional theory (DFT) calculations,

we found that lead chalcogenide monolayers PbX (X=S, Se, Te) have large Rashba

coupling λ ∼ 1 eVÅ in their non-centrosymmetric buckled phase [35]. In addition,

the spin texture can be switched in a non-volatile way by applying an electric field or

mechanical strain, which puts these materials into the family of ferroelectric Rashba

semiconductors (FERSCs) [108, 126]. This spin-switching mechanism has recently

been observed experimentally in thin films GeTe where the surface is engineered to

have either an inward or outward electric polarization [129].

In reality, monolayers experience strains due to substrates, defects, and so on,

where local strains may change the electronic properties of monolayers. Important
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Figure 6.1: (a) Schematic top and side views of a buckled AB monolayer. (b)
Undeformed and deformed Brillouin zone as the monolayer is stretched in the x and
y direction.

examples of such effects are pseudo-Landau levels in graphene blisters [10] and band

gap shifts in biaxially strained MoS2 [130]. Recently, spatial variations of Rashba

coupling due to variations in local electrostatic potentials were reported in InSb [131].

To date, most theoretical studies of lead chalcogenide monolayers have been based

solely on DFT calculations [103, 115]. However, because DFT is limited to the

simulation of small systems, typically several nanometers, it is difficult to model

inhomogeneous strains over large spatial areas using DFT.

In this paper, based on our previous tight-binding (TB) model [35, 36], we de-

velop a continuum model to predict strain-induced changes in the spin and electronic

properties of buckled PbX monolayers. We have also performed DFT calculations

to validate our TB predictions. Due to the buckled structure of PbX, the angular

dependence becomes important as the relative angle between hybrid orbitals of the

top and bottom layer can change substantially [35]. We note that some studies on

(non-buckled) SnTe and PbX (X=S, Se, Te) rock-salt type materials have incorpo-
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rated strain effects in the TB, but did not include the changes in hopping parameters

due to angle changes [132, 133]. In contrast, our TB formulation incorporates the

effects due to changes in (i) bond distance and (ii) angle between nearest neighbors

as well as (iii) lattice vector deformation.

In the low-energy Hamiltonian, the biaxial (or uniaxial) strains can be described

as gauge fields, which are equivalent to, by minimal coupling, the application of in-

plane magnetic fields. The out-of-plane strain is directly related to the out-of-plane

polarization and this also modifies the Rashba parameter. Within this framework

we are able to quantify the Rashba fields in terms of the strain fields.

6.2 Computational Details

To validate our tight-binding predictions we performed density functional theory

(DFT) calculations implemented in the Quantum ESPRESSO package [82]. We

employed projector augmented-wave (PAW) type pseudopotentials with Perdew-

Burke-Ernzerhof (PBE) within the generalized gradient approximation (GGA) for

the exchange and correlation functional with [117]. The Kohn-Sham orbitals were

expanded in a plane-wave basis with a cutoff energy of 100 Ry and a charge density

cutoff of 200 Ry. The cutoff was chosen following the suggested minimum cutoff in

the pseudopotental file. A k-point grid sampling was generated using the Monkhorst-

Pack scheme with 16×16×1 points [84]. A vacuum of 20 Å was used. The relaxed

structures of PbS, PbSe, and PbTe were obtained by relaxing the ionic positions and

the lattice vectors. A convergence threshold on total energy of 10−5 eV and a conver-

gence threshold on forces of 0.005 eV/Å
−1

were chosen. Lattice vectors are relaxed

until the stress is less than 0.01 GPa. Our first-principles calculations show that

the buckled phase of the PbX monolayer is more stable than the centrosymmetric

planar phase [35], consistent with other DFT studies [115, 134]. Detailed discussions
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on the bistable nature, ferroelectric properties and orbital-spin texture properties of

lead chalcogenides can be found in our previous paper [35]. In the current work, the

deformations (atomic distortions) are applied to the optimized buckled structure.

We used a finer grid for band structure calculations with the spin-orbit interaction

included. We have tried several large numbers of k points and found that a grid of

100 k points between two symmetry points (e.g between X and M) is enough to

obtain the Rashba parameter λ at the M point [35]. A regular grid of 40×40×1 was

used for the surface plot of the energy spin splitting.

Here we tabulate the optimized (relaxed) geometrical parameters of buckled PbX

(X=S, Se, and Te) monolayers in table 6.1. The Rashba parameters λ are obtained by

taking the derivative of energy dispersion near the M point. The orbital coefficients

are obtained by projecting the wave functions into the atomic orbital basis. The

unstrained values of λ and ∆ are tabulated in table 6.2. From the table it can be

seen that the wave functions are mostly composed of in-plane and out-of-plane of p

orbitals of Pb and an in-plane orbital of the chalcogen X (X=S, Se, Te).

Table 6.1: Relaxed lattice constant a, buckling angle θ, buckling height dz, nearest-
neighbor bond distance d.

a(Å) θ(◦) dz(Å) d(Å)

PbS 3.74 21.6 1.04 2.84
PbSe 3.82 24.3 1.22 2.96
PbTe 4.01 26.3 1.40 3.16

Table 6.2: Rashba parameters λ, projected wave functions coefficients |c0|2, |c1|2,
|c2|2 obtained from DFT and ∆.

|c0|2 |c1|2 |c2|2 λ(eVÅ) ∆ (eV)

PbS 0.305 0.534 0.115 3.40 5.36
PbSe 0.272 0.549 0.137 3.37 4.28
PbTe 0.286 0.522 0.130 3.18 3.83
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6.3 Tight-binding

Lead chalcogenide PbX (X=S, Se, Te) consists of two atoms per unit cell, denoted

by A and B atoms, respectively. Lead is a heavy atom (Z(Pb)=82), and it is crucial

for creating large spin-orbit interaction (SOI). The schematic top and side views of

a buckled AB lattice are shown in fig. 6.1(a). aaa is the unit lattice vector and δδδj is

the vector connecting atom i and its j neighbor. We denote the relaxed bond length

between the neighboring A and B atoms by d, the vector connecting A and B atoms

in the (0, 0) unit cell δδδ1 = d(α, α,−γ) where α = cos θ√
2

, γ = sin θ, and θ is the buckling

angle (with θ = 0 corresponding to a flat lattice).

The bands near the Fermi level are mostly composed of s and p orbitals from

both A and B atoms [35]. The bands near the symmetry points can be described

within the TB framework including first nearest neighbors and SOI. We we will only

outline the important parts; a more detailed derivation can be found in in chapter 4.

For the two atom AB unit cell shown in Fig. 6.1(a), the relevant orbital basis

involves {sA, pAx , pAy , pAz , sB, pBx , pBy , pBz }. To write down the hopping matrix, we use

the Slater-Koster matrix elements for the orbitals of neighboring atoms [96]. As

we include the SOI, HSOI = TX

(
L+⊗s−+L−⊗s+

2
+ Lz ⊗ sz

)
(where X = A,B), we

will write our Hamiltonian in angular momentum basis. The dimension of the total

Hilbert space is 16× 16 with new basis of |µ〉 → |m〉|morb〉|s〉, where m = {|A〉, |B〉}

is the sublattice degree of freedom, morb = {|0, 0〉, |1, 1〉, |1,−1〉, |1, 0〉} is the orbital

angular momentum degree of freedom, and s = {(|+〉, |−〉} is the spin degree of

freedom.

We found a Rashba-like dispersion near the Γ and M points when the two sub-

lattices are not equivalent [35, 36]. In this paper, we develop a continuum strain

model describing changes in the Rashba dispersion near the M point, and thus the

Hamiltonian is expanded around the M point k = (π/a, π/a). Exactly at M [q = 0],
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the Hamiltonian decomposes into several uncoupled blocks and the wave function of

the conduction band is given by |Ψ±〉mn = c0|m〉 ⊗ |1,±1〉 ⊗ |∓〉 + c1|m〉 ⊗ |1, 0〉 ⊗

|±〉 ± ic2|n〉 ⊗ |1,∓1〉 ⊗ |∓〉, with c0, c1, and c2 being real numbers [35, 36]. The

Hamiltonian for the valance band can be obtained by interchanging m and n.

Projecting the Hamiltonian onto the conduction band subspace we obtain the

effective Rashba-like Hamiltonian

Hmn
eff = λ [(q× σσσ) · ẑ] :

|Ψ+〉mn

|Ψ−〉mn

 , (6.1)

where q is the momenta, σσσ = (σx, σy, σz), λ ≡ a sin 2θ∆c1c2 is the Rashba parameter,

and ∆ = Vppσ − Vppπ. The coefficients c0, c1, c2 can be obtained from the DFT

calculations. Since we know the buckling angle θ we can can evaluate ∆. All of the

relevant (unstrained) parameters are tabulated in Appendix 6.2.

6.4 Strain-induced Gauge Fields

Since the SOI is independent of lattice distortions, in this derivation we will focus

on the spinless Hamiltonian and then reintroduce the spin terms. We will focus on

the conduction band only, as the changes in valence band should be similar.

Under deformation a vector connecting two points in a unit cell i can be approx-

imated as

rrr′j − rrr′i ' δδδj + δδδj · ∇uuu(rrri), (6.2)

where uuu = (ux, uy, uz) is the displacement vector, and ∇uuu = ε̃εε+ ω̃ωω. The strain tensor

component εij is given by

εij =
1

2

(∂ui
∂xj

+
∂uj
∂xi

+
∂ul
∂xi

∂ul
∂xj

)
. (6.3)
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(a) (b) In-plane strains Out-of-plane strains 

Figure 6.2: Schematic changes in the Rashba dispersions due to (a) in-plane strains
and (b) out-of-plane strains. The linear Rashba dispersions at the M for unstrained
systems are colored blue. Under positive in-plane strains, the Rashba points shift
closer to Γ and the strength of Rashba parameters decrease (smaller slope) with
increasing strains. On the other hand, under out-of-plane strain, the strength of
Rashba parameters increases with increasing uniaxial out-of-plane strain while the
Rashba points do not shift.

In this work we focus on deformation that does not involve local rotation ω̃ωω = 0.

Similarly, between two lattice vectors

RRR′j −RRR′i ' aaai + aaai · ∇uuu(RRRi). (6.4)

Alterations in bond distance will result in changes in the hopping energies. Since

studies of lead chalcogenides under strain are very limited, we follow the Wills-

Harrison’s argument [135] and assume that the hopping energy t ∝ r−βµν . Similar

considerations also have been used for strained TMDCs [136, 137, 138] and phos-

phorene [139, 140]. Note that the hopping matrix derived from Slater-Koster has

angular dependence and these relative angles should change due to strain. Assuming
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the hopping matrix depends on bond distance only, the modified hopping parameter,

in terms of the strain tensor ε̃εε [136, 137], is

t′ij,µν(δij) ' tij,µν(1− βµν
1

d2
δδδj · ε̃εε · δδδj), (6.5)

This approximation is also the case for graphene, where the hopping modulation

is approximated as t′(δδδij) = te−β(|δδδij |/d−1). In particular, this approximation works

well for flat graphene under strain because the angle between pz orbitals does not

change. The angular dependence becomes more important when deformations, such

as nanobubbles and kirigami patterns, create large curvature (bending) [141, 142].

In buckled lead chalcogenides, however, the relevant hopping terms for the Rashba

dispersion depend on the buckling angle even in the simple case of biaxial strains [35].

Thus we will include this angular dependence, and we will show that this is important

to capture the changes in Rashba coupling with uniaxial strain.

Let the unstrained vector connecting an atom A and its neighbor be defined as

δδδj = (x, y, z) and the equilibrium distance r = d. Here we show the derivation for

tpxpz , while the others can be found by following the same procedure. We assume

∆(r′) = ∆0

(
r
r′

)β
and we expect β ≈ 3 [135]. In Cartesian coordinates the strained

hopping is given by

tpxpz(x
′, y′, z′) =

x′z′

r′2
∆0

( r
r′

)β
, (6.6)

and by Taylor expansion we obtain,

δtij,pxpz(x
′, y′, z′) '− tij,pxpz(x, y, z)

([
(2 + β)− (r/x)2

] 1

r2
x · (x′ − x)

−
[
2 + β

] 1

r2
y · (y′ − y)

−
[
(2 + β)− (r/z)2

] 1

r2
z · (z′ − z)

)
. (6.7)
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Within the strain approximation

x′ − x =x̂ · ε̃εε · δδδj

y′ − y =x̂ · ε̃εε · δδδj

z′ − z =x̂ · ε̃εε · δδδj (6.8)

If we alter only the bond distance while keeping the angle constant, we will get the

same expression as above when angular effects are assumed to be negligible.

The interlattice-spinless Hamiltonian in reciprocal space can be written as

H int
orb(k) =

∑
µ,ν

∑
〈ij〉

(tij,µν + δtij,µν)e
ik·∆∆∆j(1+ε̃εε)c†i,k,µcj,k,ν + h.c.

=
∑
µ,ν

∑
〈i,j〉

tij,µνe
ik·∆∆∆jc†i,k,µcj,k,ν︸ ︷︷ ︸
H0

+
∑
µ,ν

∑
〈i,j〉

itij,µνk · ε̃εε ·∆∆∆je
ik·∆∆∆jc†i,k,µcj,k,ν︸ ︷︷ ︸

H(1)

+

(6.9)∑
µ,ν

∑
〈i,j〉

δtij,µνe
ik·∆∆∆jc†i,k,µcj,k,ν︸ ︷︷ ︸

H(2)

+O(ε2), (6.10)

where 〈ij〉 is the sum over nearest neighbor pairs and ∆∆∆j = Rj −Ri. The first term

H0 is the unstrained Hamiltonian, H(1) is the correction due to lattice deformation,

and H(2) is the correction from the altered hopping parameter due to changes in both

the interatomic distance and angle between orbitals.



99

6.5 Homogenous Isotropic Strains

We start with a simple deformation with no shear

ε̃εε =


εxx 0 0

0 εyy 0

0 0 εzz

 . (6.11)

We will focus on the matrix elements that are relevant to the conductions band, such

as |A〉|1, 0〉 and |B〉|1, 1〉. In the angular momentum basis, the correction from H(1)

and H(2) at M is given by

A〈1, 0|H(1)|1, 1〉B =a0

√
2α0∆0γ0

[
εxxπ/a0 + qxεxx − iεyyπ/a0 − iqyεyy

]
A〈1, 0|H(2)|1, 1〉B =− a0

√
2α0γ0∆0α

2
0(2 + β)

[
(εxx

+ f1εyy + f2εzz)qx − (f1εxx + εyy + f2εzz)iqy

]
(6.12)

where,

f1 = 1− 1

α2
0(2 + β)

and (6.13)

f2 =
γ2

0

α2
0

− 1

α2
0(2 + β)

. (6.14)

Note that a0, α0, β0, γ0,∆0 are the unstrained geometrical and hopping parameters. H(1)

is independent of the z direction strains (e.g εxz) because the lattice vector R and k are

two-dimensional. Because of the symmetry of M , we found that the first correction at

M due to bond alterations is first order in ε and momentum q. In graphene, the first

correction from hopping modulation that is linear in ε (but not proportional to q) is not

zero [143, 144, 145]. We have to include the contributions of H(1) up to first order in q as

well because in H(2) (β-dependent term) we keep terms up to first order in q and ε.

To obtain β we will consider an isotropic strain ε · 13×3. Notice that the change in
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low-energy Hamiltonian of Eq. 6.1 due to H(1) and H(2) at M can be written as gauge

potentials,

Heff = −iλ0

 0 (qx − iqy) +AAA1 +AAA2

(qx + iqy) +AAA∗1 +AAA∗2 0

 . (6.15)

where,

AAA1 =

 επ/a0 + ε qx

−iεπ/a0 − iε qy

 and (6.16)

AAA2 =− β

 ε qx

−iε qy

 (6.17)

where we have used 2α2
0 + γ2

0 = 1 to simplify AAA1,AAA2 and λ0 is the unstrained Rashba

parameter.

AAA2 and the second term of AAA1 are proportional to q. This modifies the strength of

Rashba parameter

λ

λ0
− 1 ' (1− β)ε. (6.18)

This alteration in the Rashba term is similar to the modification of Fermi velocity in

graphene [144, 145, 146].

We next present our DFT results to validate our TB predictions. Strains are applied

to the relaxed buckled phase. In order to find the effects that come from changes in bond

distance only, we deformed the monolayer in the DFT simulations by changing the bond

distance while keeping the angle constant. The lattice vectors and atomic positions are

not relaxed under this deformation. The Rashba parameters λ are obtained by taking the

derivative of the energy dispersion in the vicinity of the M point, |q| < 0.1π/a. Under

isotropic deformations, we found that λ at M decreases with increasing strain (weakening

of the hopping interaction), as expected from Eq. 6.15, shown in fig. 6.3(a)-(c). A direct

comparison between DFT results and TB with strain-included allows us to extract β. By
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Figure 6.3: (a) Representative band structures of strained PbS along symmetry
points X-Γ-Y -M -X and (b) close to M . (c) Relative change in the Rashba param-
eters obtained from DFT calculations as a function of strain ε for PbS, PbSe, and
PbTe.

fitting DFT data points to a straight line, we obtained β = 3.25, 3.20, 2.97 for PbS, PbSe,

and PbTe, respectively (fig. 6.3(c)). We see that the value of β would be different if the

lattice deformation correction was not included.

As we stretch the lattice, the Brillouin zone (BZ) will shrink, and the corner of the BZ

(M point) will shift as

(
π

a0
,
π

a0

)
→
(

π

a0(1 + ε)
,

π

a0(1 + ε)

)
'
(
π

a0
(1− ε), π

a0
(1− ε)

)
, (6.19)

where a0 is the undeformed lattice constant. For positive strains, theM point shifts towards

the Γ point (relative to the undeformed BZ), shown in fig. 6.1(b). In our modified TB
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(a) (b) 

Figure 6.4: Energy spin-splitting of PbS for isotropic strains of (a) ε = 0.00 and
(b) ε = 0.10. It can be seen that the M points are originally located at |kx,y| = π/a0

and shifted closer to the center under a strain of ε = 0.10.

model, the M point is displaced due to the first term of the lattice deformation correction

AAA1 (see Eq. 6.15). The momentum shifts due to lattice deformations are also found in

graphene [147]. The changes in Rashba dispersion and its locations due to strains are

illustrated in fig. 6.2.

To show the momentum shifts relative to the undeformed (reference) state, we plot

the energy spin-splitting at the conduction band of PbS obtained from the DFT results

as a function of kx, ky, shown in fig. 6.4(a) and (b). Note that momenta are in units of

π/a0. Originally the M points are located at |kx,y| = π/a0 and are shifted closer to Γ

(|k′x,y| ≈ 0.9π/a0) when an isotropic strain of ε = 0.10 is applied. The momentum shift is

linear with strains k·ε̃εε, consistent with several previous works [145, 147]. This Rashba-point

shift due to strains is equivalent to applying in-plane-magnetic fields Bex to the system,

H = λ0

[(
q− eAex

c

)
× σσσ

]
· ẑ +m⊥σzB⊥ +m‖B‖ · σ‖ (6.20)

where m⊥ = −µB(c2
1−2c2

2), m‖ = −µBc1( c0√
2

+c1 +c0), and µB is the Bohr magneton. For

completeness the derivation of Eq. 6.20 can be found in section 4.4. As an illustration, we

can choose an external field of Aex = (0, 0, Bxy−Byx), upon which the in-plane magnetic
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field is given by Bex = ∇×Aex = (Bx, By, 0). Since the Bohr magneton is small, in order

to get a similar effect of 2% strain using magnetic fields, one has to apply external magnetic

fields with an approximate strength of |Bex| ∼
√

2 0.02πλ0
a0m‖

≈ 600 Tesla (by Eq. 6.15 and

Eq 6.20).

6.6 Electric Polarization and Rashba Field

Proposals have been made to change the spin texture (i.e. sign of λ) by changing the

electric polarization [121, 125, 126, 148]. Rinaldi et al. found that the spin-texture in

FERSC GeTe films indeed depends on the locations of the atoms on the surface, which

dictate the direction of the electric polarization [129]. In DFT simulations of SnTe thin

films, which have a structure similar to PbX, it also has been shown that near the vacuum

one of the atomic species buckles outward while the other species buckles inward [149].

While the proportionality between Rashba parameter and spontaneous electric polarization

is well known, it will be useful to understand this mechanism in PbX from a microscopic

view, where the changes in Rashba parameters can be understood in terms of interactions

between atoms and the external applied strains. We will show that our strain-dependent

TB model captures how the out-of-plane strain, which is proportional to the out-of-plane

polarization, modifies the Rashba fields.

We used the modern theory of polarization [85] to calculate the electric polarization as

described in the previous chapter. The spontaneous polarization is calculated by taking

the difference between the polarization of the polar (buckled) state and the non-polar

(reference) state, ∆~P = ~Ppolar − ~Pnon−polar.

To find the polarization at different heights, we change the out-of-plane distance be-

tween the Pb and X (X=S, Se) atom while keeping the in-plane lattice vectors fixed at the

optimized buckled values. It is a common practice to use a value on the order of the bulk

lattice constant (0.5–1 nm) to estimate the monolayer thickness in order to compare the

polarizations of monolayers to the typical bulk ferroelectrics [32, 118, 119]. Accordingly,
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Figure 6.5: (a) Out-of-plane polarization ∆ ~Pz as a function of out-of-plane strain εzz.
(b) Linear relationship between λ and εzz which is consistent with TB predictions.

(c) Rashba parameter λ as a function of ∆ ~Pz. All data points are obtained from the
DFT calculations.

we approximate the thickness to be 0.5 nm in order to compare the polarizations to typ-

ical bulk ferroelectrics. In this current work we estimate the thickness to be 0.5 nm. In

Quantum ESPRESSO, spontaneous polarization with spin-orbit included can be calcu-

lated using norm conserving pseudopotentials. A difference of 0.03 µC/cm2 is found when

spin-orbit interaction is included. Thus, to save computational time we only report spon-

taneous polarization without inclusion of the spin-orbit interaction. This small difference

has also been reported previously [148, 150]. In figure. 6.6 we plot the polarization from

the ionic plus core electron contribution, and the electronic contribution, from the Berry

phase calculation, scaled by their values at zero strain as a function of distance between

the Pb and S atom in the z direction. We report only the spontaneous polarizations of
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Figure 6.6: From the DFT results we found that the ionic plus core electronic and the
electronic (by Berry phase calculation) contributions are proportional to the distance
between Pb and X (X=S, Se) in the z direction.

PbS and PbSe, as PbTe is metallic [35]. A modified Berry phase calculation is needed to

evaluate polarization of ferroelectric metals [151]; however this is beyond the scope of our

present study.

From the DFT results we found that the core electronic plus ionic and the electronic

contribution (BP) are proportional to the distance between Pb and X (X=S, Se) in the

z direction (see fig. 6.6). This gives a proportionality between ∆~Pz and εzz, as shown

in fig. 6.5(a). Compressing the monolayer in the ẑ with strain εzz < 0 results in a de-

crease in λ, shown in fig. 6.5(b). This is opposite to the case of isotropic deformation (see

fig. 8.1(e)). This result is consistent with TB predictions. In the previous discussion, we

found that increasing bond distance (ε > 0) generally weakens the hopping interaction

and thus decreases λ. Using relaxed geometrical parameters (i.e buckling angle θ0) and

from Eq. 6.12, λ is expected to decrease with compressive strain in the ẑ as f2 is negative.
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We also want to note that there is no gauge-field AAA1 since k is two-dimensional, and thus

M is not shifted. The changes in Rashba dispersion and its locations due to out-of-plane

strains are illustrated in fig. 6.2(b). Notice that not including the angular dependence in

the hopping correction will not capture this effect. The inclusion of the angular dependence

is particularly important for the PbX monolayer due to its buckled nature. Overall, this

suggests that the out-of-plane internal electric polarization acts as an in-plane gauge field

in the low-energy Hamiltonian. Assuming small strains, we found that λ ∝ |~Pz|. This

result is important as it establishes a direct relationship between the Rashba field and the

out-of-plane polarization which is also proportional to the out-of-plane strain εzz. Recently,

several works have also studied strain-induced piezoelectricity in boron nitride [152] and

TMDCs [153]. Several experimental works use out-of-plane magnetic fields (parallel to

the polar axis of Rashba materials) to measure the Rashba parameter as the Landau level

spectrum changes with the strength of the Rashba parameter [99, 131]. One could also use

this experimental approach to detect variations in the Rashba parameter in PbX due to

out-of-plane strains.

6.7 Summary

We have developed a TB model where the electronic changes in PbX can be described within

continuum mechanics. We found the scaling exponent that modifies the hopping parameter

to be β ' 3. In the low-energy Hamiltonian, the effect of strains can be described as gauge

fields, which are equivalent to, by minimal coupling, application of an in-plane magnetic

field. Our theory describes how the location of the Rashba point and the strength of the

Rashba field can be engineered by applying strains. The out-of-plane strain in particular

is directly related to the out-of-plane polarization. Within this framework we are able to

understand the connection between the Rashba and ferroelectricity.

Our strain-dependent TB model should be applicable for calculating the effects of

inhomogeneous strain on the spatially-resolved Rashba fields over a large region, whereas
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this calculation would not be feasible within a reasonable time using a DFT approach.

Employing classical atomistic simulations (e.g. molecular dynamics) together with strain-

dependent TB will be an efficient tool for studying larger and more realistic systems with

strain modulation due to substrates, indentors [10, 130, 154] or geometrical cuts [142,

155].This will open possibilities of using lead chalcogenides for strain and electric-controlled

spintronic devices.



108

Chapter 7

Kirigami and actuators

In the last few chapters we have shown the importance of DFT methods to investigate

fundamental properties of 2D materials. We then developed a continuum model to de-

scribe electronic changes due to local strains. Due the large surface ratio, properties of 2D

materials can be altered substantially via defects. In the last two chapters we will focus

on studies of changes in mechanical properties of 2D materials due to cuts.

In this chapter, we utilize molecular dynamics (MD) simulations to study defects in

2D materials. MD approach is needed because the studied novel devices usually have sizes

ranging from nano- to micrometer. We report the results of classical molecular dynam-

ics simulations focused on studying the mechanical properties of MoS2 kirigami. Several

different kirigami structures were studied based upon two simple non-dimensional param-

eters, which are related to the density of cuts, as well as the ratio of the overlapping cut

length to the nanoribbon length. Our key finding is significant enhancements in tensile

yield (by a factor of four) and fracture strains (by a factor of six) as compared to pristine

MoS2 nanoribbons. These results in conjunction with recent results on graphene suggest

that the kirigami approach may be a generally useful one for enhancing the ductility of

two-dimensional nanomaterials.

The work presented in this chapter (with minimal modifications) are parts of the fol-

lowing published papers:

• P. Z. Hanakata, Z. Qi, D. K. Campbell, H. S. Park,

“Highly stretchable MoS 2 kirigami”, Nanoscale 8 (1), 458-463 (2016).
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7.1 Introduction

Molybdenum disulfide (MoS2) has been intensely studied in recent years as an alternative

two-dimensional (2D) material to graphene. This interest has arisen in large part because

(i) MoS2 exhibits a direct band gap of nearly 2 eV in monolayer form which is suitable for

photovoltaics [156]; and (ii) it has recently been explored for many potential applications,

ranging from energy storage to valleytonics [12, 63, 64, 65].

The mechanical properties of MoS2 have also been explored recently, through both

experimental [2, 157, 158] and theoretical methods [3, 4, 159, 160]. That MoS2 has been

reported experimentally to be more ductile than graphene [2] naturally raises the critical

issue of developing new approaches to enhancing the ductility of 2D materials.

One approach that has recently been proposed towards this end is in utilizing concepts

of kirigami, the Japanese technique of paper cutting, in which cutting is used to change the

morphology of a structure. This approach has traditionally been applied to bulk materials

and recently to micro-scale materials [161, 162, 163], though recent experimental [28] and

theoretical [142] works have shown the benefits of kirigami for the stretchability of graphene.

Our objective in the present work is to build upon previous successes in applying

kirigami concepts to graphene [142] to investigate their effectiveness in enhancing the duc-

tility of a different 2D material, MoS2, which is structurally more complex than monolayer

graphene due to its three-layer structure involving multiple atom types. We accomplish

this using classical molecular dynamics (MD) with a recently developed Stillinger-Weber

potential [1]. We find that kirigami can substantially enhance the yield and fracture

strains of monolayer MoS2, with increases that exceed those previously seen in monolayer

graphene [142].

7.2 Methods

We performed MD simulations using the Sandia-developed open source code LAMMPS [164,

165] using the Stillinger-Weber potential for MoS2 of Jiang [1]. All simulations were per-
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Figure 7.1: (Color online) Schematic of the MoS2 kirigami, with key geometric pa-
rameters labeled. The kirigami is deformed via tensile displacement loading that
is applied at the two ends in the direction indicated by the arrows. Top image
represents a top view of the kirigami.

formed on single-layer MoS2 sheets. Of relevance to the results in this work, we note that

while the Stillinger-Weber potential does not have a term explicitly devoted to rotations, it

does contain two and three-body terms including angular dependencies, which is important

for out-of-plane deformations. Furthermore, the Stillinger-Weber potential of Jiang [1] was

fit to the phonon spectrum of single-layer MoS2, which includes both in and out-of-plane

vibrational motions. As a result, the Stillinger-Weber potential should do a reasonable job

of capturing out-of-plane deformations that involve angle changes, such as rotations.

The MoS2 kirigami was made by cutting an MoS2 nanoribbon, which had free edges

without additional surface treatment or termination. A schematic view of the kirigami

structure and the relevant geometric parameters is shown in Fig. 7.1. The key geometric

parameters are the nanoribbon length L0, the width b, the height of each interior cut

w, the width of each interior cut c, and the distance between successive cuts d. We

considered kirigami for both zig-zag (ZZ) and armchair (AC) edges. A representative

AC MoS2 kirigami consisting a number of N ∼ 12, 000 atoms with a nanoribbon length

L0 ∼ 450 Å, width b ∼ 100 Å, height of each interior cut w ∼ 70 Å, width of each interior

cut c ∼ 11 Å, and distance between successive cuts d ∼ 55 Å is shown in Fig. 7.1.

The MD simulations were performed as follows. The kirigami was first relaxed for
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Figure 7.2: (Color online) Stress-strain curves of AC MoS2 kirigami, where the 2D
stress was calculated as the stress σ times thickness t. (a) Stress-strain curve for
constant α = 0.0866, β = 0.0375. (b) Stress-strain curve for AC kirigami keeping
β = 0.0375 constant and varying α. Note the brittle fracture of the pristine MoS2

nanoribbon. In general, the strain in region III increases substantially for α > 0.

200 ps within the NVT (constant number of atoms N , volume V and temperature T )

ensemble at low temperature (4.2 K), while non-periodic boundary conditions were used

in all three directions. The kirigami was subsequently deformed in tension by applying

uniform displacement loading on both ends, such that the kirigami was pulled apart until
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Figure 7.3: (Color online) Stress-strain curve of a monolayer MoS2 sheet under tensile
loading along the armchair direction using two different SW potentials. The newer
SW potential [1] matches better with the trends observed in DFT calculations [2]
than the first SW potential of Jiang et al. [3]. No phase transition is observed with
the more recent SW potential of Jiang [1]. For SW13, breaking of bonds between
the Mo and S layers occur at ε ∼0.2 and ε ∼0.3 as observed in Ref. [4]

fracture occurred. We note that in actual applications, the MoS2 kirigami will likely lie on

a substrate, and thus adhesive interactions with the substrate may impact the deformation

characteristics. In the present work, we focus on the intrinsic stretchability of the MoS2

kirigami while leaving the interactions with a substrate for future work.

We note that we have used the more recent Stillinger-Weber (SW15) potential of

Jiang [1] rather than the earlier SW potential also developed by Jiang and co-workers [3]

(SW13). This is because in comparing the tensile stress-strain curves, the SW15 potential

more closely captured the trends observed in DFT calculations [2]. We have also per-

formed simulations of many kirigamis, nanoribbons, and monolayer sheets using the old

SW potential. We have found qualitatively similar results with the very important differ-



113

ence that the SW13 potential predicts a tensile phase transition in pristine nanoribbon

and monolayer sheet [4] that is not observed in the SW15 potential [1]. A comparison of

the tensile stress-strain curve for monolayer MoS2 is shown in Fig. 7.3 for the potentials of

Jiang (SW15) [1], and Jiang et al. (SW13) [3].

Table 7.1: Comparison of mechanical properties of MoS2 sheets and pristine nanorib-
bons in the armchair (AC) and zigzag (ZZ) direction.

System εf σ3D
f (GPa) Y 3D(GPa)

Sheet (AC) 0.178 16.8 154.0
Sheet (ZZ) 0.175 15.6 150.7
NR (AC) 0.130 14.6 145.8
NR (ZZ) 0.129 13.6 130.0

In addition, we simulated MoS2 sheets (defined as monolayer MoS2 with periodic

boundary conditions in the plane) and pristine nanoribbons with no cuts for comparative

purposes. The calculated fracture strains εf , fracture stresses σ3D
f , and Young’s modulus

Y 3D are tabulated in Table 7.1. The results are in reasonably good agreement with the

experimental and first-principles studies of MoS2 monolayer sheets [2, 157]. In the previous

table, 3D stresses σ3D
f are calculated as σ2D

f /th, where th is the effective thickness with a

value of ∼ 6 Å.

7.3 Results

In Figure 7.2 (a), we plot a representative stress-strain curve of MoS2 kirigami. For this, and

the subsequent discussion, we introduce two non-dimensional geometric parameters α =

(w−0.5b)/L0 and β = (0.5d− c)/L0, which were also previously used to describe graphene

kirigami [142]. α represents the ratio of the overlapping cut length to the nanoribbon

length, while β represents the ratio of overlapping width to the nanoribbon length. Put

another way, α describes the geometry orthogonal to the loading direction, while β describes

the geometry parallel to the loading direction. Figure 7.2(a) shows the stress-strain for

the specific choices of α = 0.0866, and β = 0.0375, which were obtained by choosing
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Figure 7.4: Side and top views of kirigami during deformation.

b=101.312 Å, L0=438.693 Å, w=88.648 Å, c=10.967 Å, and d=54.837 Å. In contrast,

Figure 7.2(b) shows the change in the stress-strain response if β = 0.0375 is kept constant

while α changes. This is achieved by changing w while keeping other geometric parameters

constant. We also note that the 2D stress was calculated as stress times simulation box

size perpendicular to the plane σ× t to remove any issues in calculating the thickness [159],

where the stress was obtained using the virial theorem, as is done in LAMMPS.

It can be seen that there are generally three major stages of deformation for the

kirigami, as separated by the dashed lines in Fig. 7.2(a). In the first stage (region I),

the deformation occurs via elastic bond stretching, and neither flipping nor rotation of the

monolayer MoS2 sheet is observed as shown in Fig. 7.4. In previous work, it was found

that graphene kirigami rotates and flips in the first stage instead of bond stretching [142].

This does not occur for kirigami in MoS2 in this first stage because the bending modulus

of MoS2 is nearly seven times higher than that of graphene [159].

In the second stage (region II), for tensile strains (ε) exceeding about 10%, further strain

hardening occurs. Kirigami patterning allows the MoS2 monolayer to exhibit out-of-plane

deflections, as shown in Fig. 7.4, which allows the MoS2 monolayer to undergo additional

tensile deformation, which is in contrast to the brittle fracture observed for the pristine

nanoribbon immediately following the initial yielding event as shown in Fig. 7.2(b). Fur-

thermore, the out-of-plane deflections cause the slope of the stress-strain curve in region II
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to be smaller than that in region I. This is because of the change in deformation mechanism

Figure 7.5: Von Mises stress prior to the fracture at a tensile strain of 62% in (a)
Mo layer and (b) top S layer of kirigami in Fig. 7.4. We plot the stress distribution
layer by layer to give a clear picture of the stress distribution. The von Mises stress
were scaled between 0 and 1.

from purely elastic stretching of bonds in region I, to a combination of stretching and out

of plane buckling in region II.

Local bond breaking near the edges starts to occur at the tensile strain of ε = 35%. The

occurrence of bond breaking is usually defined as the yield point, and signifies the demarka-

tion between regions II and III. This local bond breaking occurs due to the concentrated

stress at the edges connecting each slab, as previously observed in graphene kirigami [142].

At this stage, each kirigami unit is held by a small connecting ribbon which allows the

monolayer to be almost foldable. Fig. 7.4 (stages 1 to 3) shows how the inner cut surface

area having initial area w×c and the height of the monolayer (largest out-of-plane distance

between S atoms) can change significantly during the tensile elongation.
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In the final stage, after more than 62.5% tensile strain, fracture and thus failure of

the kirigami nanoribbon is observed. Unlike the pristine nanoribbon, the yield point can

differ substantially from the fracture strain and the difference increases with increasing

cut-overlap, which was described previously as shown in Fig. 7.2(b). Thus, it is important

to quantify the yield point of the kirigami as it defines the beginning of the irreversible

deformation regime. Note that these regions vary depending on the kirigami structure as

shown in Fig. 7.2(b).

We also show, in Fig. 7.5, the von Mises stress distribution prior to fracture at a

tensile strain of 62%. In Fig. 7.5, the stress values were scaled between 0 and 1, and

the stress distributions in the top S layer and single Mo layer were plotted separately

for ease of viewing as MoS2 has a tri-layer structure. We found that the largest stresses

are concentrated near the edges of the each kirigami unit cell similar to that previously

observed in graphene kirigami [142].

Having established the general deformation characteristics for MoS2 kirigami, we now

discuss how the yield and failure characteristics are dependent on the specific kirigami

geometry. We discuss the yield and fracture stresses and strains in terms of the two

geometric parameters α and β that were previously defined.

The yield strain as a function of α is shown in Fig. 7.6(a), while the yield stress as

a function of α is shown in Fig. 7.6(b). In these, and all subsequent figures, the stresses

and strains are normalized by those for pristine MoS2 nanoribbons of the same width such

that the effect of the kirigami parameters can be directly quantified. As shown in Fig. 7.6,

the MoS2 kirigami becomes significantly more ductile for α > 0, where the zigzag chirality

reaches a yield strain that is about a factor of 6 larger than the pristine nanoribbon. In

contrast, Fig. 7.6 (b) shows that the yield stress for kirigami correspondingly decreases

dramatically for increasing α. We also note that the kirigami patterning appears to have a

similar effect on the ductility of zigzag and armchair MoS2 kirigami (shown in Fig. 7.6(a))

as the fracture strain and bending modulus of MoS2 monolayer sheet in zigzag and armchair

direction are similar [1, 159].
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Figure 7.6: (Color online) (a) Influence of α on yield and fracture strain for zigzag
(ZZ) and armchair (AC) MoS2 kirigami, with constant β = 0.0375 for AC and
constant β = 0.0417 for ZZ. (b) Influence of α on yield and fracture stress for zigzag
(ZZ) and armchair (AC) MoS2 kirigami. Data are normalized by MoS2 nanoribbon
results with the same width.

The increased ductility occurs because α = 0 corresponds to the case when the edge

and interior cuts begin to overlap. Increasing α above zero corresponds to when the edge

and interior cuts do overlap, and thus it is clear that increasing the overlap increases the

ductility of the MoS2 kirigami. In contrast, the yield stress is higher for smaller α because

for negative α, the edge and interior cuts do not overlap, and thus the deformation of the
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Figure 7.7: (Color online) Influence of β on the kirigami yield and fracture strain (a)
and stress (b), with constant α = 0.0186 for AC and constant α = 0.0157 for ZZ.
Data are normalized by MoS2 nanoribbon results with the same width.

kirigami more closely resembles that of the cut-free nanoribbon.

In addition to the results of α, the effect of β on the kirigami ductility is shown in Figs.

7.7(a) and 7.7(b). Specifically, β is varied by changing d while keeping other geometric

parameters constant. For both the yield stress and strain, β does impact the yield stress

and strain. Increasing β corresponds to an increase in the overlapping region width, which

thus results in a smaller yield strain, and increased yield stress as compared to a pristine
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nanoribbon. For β ≥ 0.03, we do not observe large differences between the AC and ZZ

behavior in the case of varying β because increasing β (or decreasing the cut density)

makes the kirigami more pristine, leading to similar values of fracture stress and strain in

the AC or ZZ direction (see Table 7.1). Our results suggest that the failure strain can be

maximized by increasing the overlapping cut (increasing α) and increasing density of the

cuts (decreasing β).

Recently, Guo et al. showed stretchability of metal electrodes can be enhanced by cre-

ating geometries similar to the ones illustrated in Fig. 7.1 [163]. Adopting the geometric

ratios determining fracture strain described in Ref. [163], we found similar trends: the

fracture strain increases with decreasing (b−w)
c and increases with increasing b

d . It is inter-

esting to see that a similar trend is operant at a different length scale (an atomically-thin

monolayer in this work as compared to a ≈40 nm thin film in the work of Guo et al.), and

for a different material system (MoS2 in this work, nanocrystalline gold in the work of Guo

et al.), which suggests that the fracture strain in patterned membranes can be described

entirely by geometric parameters.

It is also interesting to note that the yield and fracture strain enhancements shown in

Fig. 7.6(a) exceed those previously reported for monolayer graphene kirigami [142]. The

main reason for this is that the failure strain for the normalizing constant, that of a pristine

nanoribbon of the same width, is smaller for MoS2. As shown in Table 7.1, this value is

about 13%, whereas the value for a pristine graphene nanoribbon was found to be closer

to 30% [142]. However, the largest failure strain for the MoS2 and graphene kirigami were

found to be around 65%, so the overall failure strains for graphene and MoS2 kirigami

appear to reach similar values.

In addition to the yield and fracture behavior, we also discuss the elastic properties,

or Young’s modulus. For the kirigami system, we expect the Young’s modulus to decrease

with increasing width of the cut w due to edge effects [3]. Fig. 7.8 shows the dependence

of Young’s modulus with effective width beff = b − w. As can be seen for both armchair

and zigzag orientations, the modulus decreases nonlinearly with decreasing effective width,
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Figure 7.8: 2D Young’s modulus E2D of armchair (AC) and zigzag (ZZ) kirigami,
pristine nanoribbons (PNR), and sheets. Inset shows E2D of kirigami normalized by
PNRs. The fitting dashed line (colored blue) is given as a guide to the eye.

reaching a value that is nearly 200 times smaller than the corresponding bulk value for

the smallest effective width value we examined. Furthermore, the trend of the decrease

differs from that previously seen in graphene nanoribbons based on first principles calcula-

tions [166] and MoS2 nanoribbons based on atomistic simulations [3], where a significantly

more gradual decrease in stiffness was observed. This is due to the fact that for a given

nanoribbon width b, the kirigami has significantly more edge area than a nanoribbon, lead-

ing to significant decreases in elastic stiffness even for effective widths beff that are close to

the corresponding nanoribbon width.

7.4 Summary

In summary, we have applied classical molecular dynamics simulations to demonstrate

that the kirigami patterning approach can be used to significantly enhance the tensile
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ductility of monolayer MoS2, despite the much higher bending modulus and rather more

complex tri-layer structure of MoS2 compared to graphene. The resulting enhancements

in tensile ductility are found to exceed those previously reported for graphene [142]. These

results suggest that kirigami may be a broadly applicable technique for increasing the

tensile ductility of two-dimensional materials generally, and for opening up the possibility

of stretchable electronics and photovoltaics using monolayer MoS2.
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Chapter 8

Accelerated search and design of

stretchable graphene kirigami using deep

learning

In the previous chapter we have shown how kirigami-inspired cuts can be utilized to design

stretchable materials with metamorphic properties where the 2D shape can transform into

complex 3D shapes. However, finding the optimal solutions is not straightforward as the

number of possible cutting patterns grows exponentially with system size. Using molecular

dynamics (MD) to simulate all possible candidate designs would not be practical.

In this chapter, we introduce machine learning (ML) approach for topology optimiza-

tion. ML can be used to approximate the target properties, such as yield stress and yield

strain, as a function of cutting pattern. Our approach enables the rapid discovery of

kirigami designs that yield extreme stretchability as verified by molecular dynamics (MD)

simulations. We find that convolutional neural networks (CNN), commonly used for clas-

sification in vision tasks, can be applied for regression to achieve an accuracy close to the

precision of the MD simulations. This approach can then be used to search for optimal de-

signs that maximize elastic stretchability with only 1000 training samples in a large design

space of ∼ 4× 106 candidate designs. This example demonstrates the power and potential

of ML in finding optimal kirigami designs at a fraction of iterations that would be required

of a purely MD or experiment-based approach, where no prior knowledge of the governing

physics is known or available.
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The work presented in this chapter (with some modifications) has been published in:

• P. Z. Hanakata, E. D. Cubuk, D. K. Campbell, H. S. Park,

“Accelerated search and design of stretchable graphene kirigami using machine learn-

ing”, Physical review letters 121 (25), 255304 (2018)

8.1 Introduction

Recently, there has been significant interest in designing flat sheets with metamaterial-type

properties, which rely upon the transformation of the original 2D sheet into a complex 3D

shape. These complex designs are often achieved by folding the sheet, called the origami

approach, or by patterning the sheet with cuts, called the kirigami approach. Owing

to the metamorphic nature, designs based on origami and kirigami have been used for

many applications across length scales, ranging from meter-size deployable space satel-

lite structures [167] to soft actuator crawling robots [168] and micrometer-size stretchable

electronics [28, 162].

Atomically thin two-dimensional (2D) materials such as graphene and MoS2 have been

studied extensively due to their exceptional physical properties (mechanical strength, elec-

trical conductivity, etc). Based on experiments [28] and atomistic simulations [155, 169],

it has been shown that introducing arrays of kirigami cuts allows graphene and MoS2

to buckle in the direction perpendicular to the plane. These out-of-plane buckling and

rotational deformations are key to enabling significant increases in stretchability.

By the principles of mechanics of springs, it is expected that adding cuts (removing

atoms) generally will both soften and weaken the material. Griffith’s criterion for frac-

ture [170] has been successfully used to explain the decrease in fracture strength for a

single cut [171, 172, 173, 174], but cannot explain how the delay of failure is connected to

the out-of-plane deflection of kirigami cuts. Several analytical solutions have been devel-

oped to explain the buckling mechanism in single cut geometries [175, 176], a square array

of mutually orthogonal cuts [177], and a square hole [178]. These analytical solutions are
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applicable for regular repeating cuts, but may not be generally applicable for situations

where non-uniform and non-symmetric cuts may enable superior performance.

An important, but unresolved question with regards to kirigami structures at all length

scales is how to locate the cuts to achieve a specific performance metric. This problem is

challenging to solve due to the large numbers of possible cut configurations that must be

explored. For example, the typical size scale of current electronic devices is micrometers

(10−6 meters) and the smallest cuts in current 2D experiments are about 10× 10 Å [179].

Thus, exhaustively searching for good solutions in this design space would be impractical

as the number of possible configurations grows exponentially with the system size. Alter-

natively, various optimization algorithms, i.e. genetic and greedy algorithms, and topology

optimization approaches, have been used to find optimal designs of materials based on

finite element methods [180, 181, 182, 183]. However, these approaches have difficulties

as the number of degrees of freedom in the problem increases, and also if the property of

interest lies within the regime of nonlinear material behavior.

Machine learning (ML) methods represent an alternative, and recently emerging ap-

proach to designing materials where the design space is extremely large. For example, ML

has been used to design materials with low thermal conductivity [184], battery materi-

als [185, 186], and composite materials with stiff and soft components [187]. ML methods

have also recently been used to study condensed matter systems with quantum mechanical

interactions [188, 189, 190], disordered atomic configurations [191, 192, 193] and phase

transitions [46, 194]. While ML is now being widely used to predict properties of new

materials, there have been relatively few demonstrations of using ML to design functional

materials and structures [195].

In this letter, we use ML to systematically study how the cut density and the locations

of the cuts govern the mechanical properties of graphene kirigami. We use fully-connected

neural networks (NN) and also convolutional neural networks (CNN) to approximate the

yield strain and stress. To formulate this problem systematically, we partition the graphene

sheets into grids, where atoms in each grid region will either be present or cut, as shown
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schematically in fig. 8.1. We then utilize the CNN for inverse design, where the objective is

to maximize the elastic stretchability of the graphene kirigami subject to a constraint on the

number of cuts. We use ML to search through a design space of approximately 4,000,000

possible configurations, where it is not feasible to simulate all possible configurations in

a brute force fashion. Despite the size of the design space, our model is able to find the

optimal solution with fewer than 1000 training data points (evaluations via MD). Our

findings can be used as a general method to design a material without any prior knowledge

of the fundamental physics, which is particularly important for designing materials when

only experimental data are available and an accurate physical model is unknown.

8.2 Methods

8.2.1 Molecular Dynamics Methods

We used the Sandia-developed open source LAMMPS (Large-scale Atomic/Molecular Mas-

sively Parallel Simulator) molecular dynamics (MD) simulation code to model graphene [164].

The carbon-carbon interactions are described by the AIREBO potential [196], which has

been used previously to study graphene kirigami [169]. The default values of AIREBO

potentials are used. The cutoffs for the Lennard-Jones and the REBO term in AIREBO

potential are chosen to be 6.8 Å and 2.0 Å (rcmax CC in the CH.airebo potential file),

respectively. The graphene sheet of size ∼ 100×200 Å consisting 2400 (9600 carbon atoms)

rectangular graphene unit cells is shown in fig. 8.1. In the 15 grids (colored red), a cut

of size 3 × 16 rectangular graphene unit cells (colored green) is allowed to be present or

absent. The graphene kirigami were stretched by applying loads at the +x and −x edges

of the sheet. The atomic configurations were first relaxed by conjugate gradient energy

minimization with a tolerance of 10−7. The graphene sheet was then relaxed at 4.2 K for

50 ps within the NVT (fixed number of atoms N , volume V , and temperature T ) ensemble.

Non-periodic conditions were applied in all three directions. After the NVT relaxation, the

edge regions were moved at a strain rate of 0.01/ps, and the graphene sheet was stretched
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until fracture. This particular strain rate was chosen to save computational time as it has
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Figure 8.1: Schematic diagrams of graphene sheet and rectangular graphene unit
cells. In this system, there are 3× 5 grids (colored red) where a cut may present or
absent. Each grid consist of 10× 16 rectangular graphene unit cells (colored green)
and each rectangular graphene unit cell consists of four carbon atoms

been shown that the fracture strain and fracture strength of graphene depend weakly on

the strain rate, especially for low temperature [171]. The 3D stress was calculated as the

stress parallel to the loading direction times the simulation box size perpendicular to the

plane and divided by the graphene effective thickness of 3.7 Å. Similar procedures have

been used for other MD, DFT simulations and experiments [32, 155, 172, 197, 198].

8.3 Machine Learning Methods and Molecular Dynamics

Precision

We used open-source machine learning packages to build the machine learning models.

Specifically, we used TensorFlow r1.8 [199] for both the neural networks (NN) and convo-

lutional neural networks (CNN) model and scikit-learn [200] for the ordinary least square

regression model. The TensorFlow r1.8 was run on four CPUs and one NVDIA Tesla K40m

GPU card.
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In convolutional neural netwrok model (CNN), we denote ‘h’ as the number of fully-

connected-layers (FCL) and ‘f’ as the number of filters in a convolutional layer. So for a

CNN model with 16 filters in first convolutional layer, 32 filters in second convolutional

layer, 64 filters in third convolutional layer, and with a 64 FCL, we will denote is as CNN-

f16-f32-f64-h64. For both NN and CNN, a learning rate of 0.0001 was used with a batch

size of 200. The number of maximum epochs was set to 300. A larger learning rate, e.g

0.001, or smaller number total iteration number was found to have little effect on the

performance. For the search algorithm CNN-f16-f32-f64-h64, a learning rate of 0.001 was

used with a batch size of 100.

The root-mean-square error (RMSE) is given by,

RMSE =

√∑mtest
i=1 (yitest − yipred)2

mtest
(8.1)

where mtest is the number of test datasets, ytest are the true values (obtained from MD)

from the test dataset, and ypred are the predicted values from a model. Because of thermal

fluctuations (non-zero temperature), the obtained yield strain or the yield stress of graphene

from the MD simulations at 4.2 K will have some variation, which we will refer to as the MD

precision. The MD precision (irreducible error) for the yield strain ηε can be approximated

as root-mean-square deviation (RMSD),

ηε =

√∑T
i=1(εy

i − εy)2

T
, (8.2)

where T is the number of observations and εy is the average of εy over T observations

which in this case are the different initial velocities (different initial conditions). The same

formula is used for the yield stress ησ. ηε is generally larger for systems with more cuts.

To save computational time we randomly choose a configuration from systems having a

cut density ranging from 0/15 to 12/15, calculate the RMSD from three different initial

conditions, and then sum the RMSD of each cut. Note that cut densities of 13/15–15/15
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are not considered because the structure is fully detached. For yield strain, the variability

is more present at higher cut density and thus we sum the RMSD from cut densities ranging

from 5/15 to 12/15.

8.4 Overview of mechanical properties

In this section, we give a brief overview of the changes in the mechanical properties of

graphene with cuts. The 2D binary array of cut configurations Ngrid = Nx×Ny is flattened

into a one-dimensional array vector xxx of size n = Ngrid. We use n for number of features,

m for the number of samples, xxx = (x1, x2, ..., xn)T for the binary vector describing cut

configurations, ~x, ~y, ~z for the real space vectors (atomic locations), and x̂, ŷ, ẑ for the unit

vectors in real space.

We study one unit kirigami of size ∼ 100× 200 Å, where cuts are allowed to be present

on the 3 × 5 grid; this gives a design space of 215 = 32768 possible cut configurations

(fig. 8.1), which we will refer to as the design space (or exploration space). Out of those,

only 29791 configurations are not detached (no full cut along the ŷ direction). Because the

system is not periodic, translation symmetry is broken. The reflection symmetry is not

broken and thus only about 1/4 of the possible configurations need to be simulated via

MD. Each cell of the grid also consists of 10 × 16 rectangular graphene unit cells. There

are 2400 rectangular graphene unit cells in this sheet; there are four carbon atoms in the

rectangular graphene unit cell. This gives a total of 9600 carbon atoms in a kirigami sheet

without cuts. In this system, the cut density can range from 0 cuts in the 15 grids to 15

cuts in the 15 grids, while keeping each cut size constant at 12× 38 Å (3× 16 rectangular

graphene unit cells), which is relevant to current experimental capabilities [179].

We simulate graphene as the 2D constituent material of choice for the kirigami at a low

temperature of 4.2 K to generate the ground truth data for our training model, Since we

simulate MD at T = 4.2 K, the obtained yield strain (or stress) of a configuration varies due

to stochasticity (i.e. distributions of the initial velocities). The MD precisions for strain



129

σy εy σu εu 

(a) (b) 

y 

x 

Figure 8.2: (a) Stress-strain plot of three representative“typical” kirigami cuts and
the corresponding structures.

and stress are ηε = 0.046 and ησ = 2.00 GPa, respectively. In this work, we focus only

on kirigami with armchair edges along the x̂ direction as the stretchability is improved

regardless of the chirality of graphene with armchair or zigzag edges [169]. The sheets

are stretched in the x̂ direction and engineering strain ε = L/L0 − 1 is used to quantify

stretchability, where L0 and L are the length of sheet in the direction of the loading before

and after the deformation, respectively.

Stress-strain curves of three representative cuts are shown in fig. 8.2(a). From the stress-

strain curve we can identify the ultimate stress σu (and the corresponding strain εu), yield

stress σy, and yield strain εy. Another point of interest is the failure point where the system

is completely detached upon stretching. Here, we focus on the yield point where plastic

deformation/bond breaking begins. Analyzing the amount of strain between yielding and

the onset of failure would give insights into the post-yielding deformation mechanisms, and
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Figure 8.3: Yield stress as a function of yield strain for different configurations.
Data are colored based on their cut density.

the role of kirigami structure in controlling the post-yield behavior, which could be done

in a subsequent study. As shown in fig. 8.3, the σy consistently decreases with increasing

number of cuts. εy has much more variability at higher cut density. At a cut density of

73% (11 cuts), εy varies over a wide range of values from ∼ 0.2 (20%) to ∼ 2.0 (200%).

This shows that increasing number of cuts without intelligently locating the cuts may not

always increase the stretchability.
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8.5 Machine learning

8.6 Model, locality, and designs principles

(a) 

(b) 

Figure 8.4: Linear plot of true values (test data) as a function of predicted value for
(a) yield strain and (b) yield stress. The red line represents y = x line.

We shall start our discussion of ML from a physics perspective. The Hamiltonian (or

any physical quantity) of many physical systems in nature can be expanded as a power
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series. We then formulate the objective functions, yield stress and strain, as

f(xxx) = β0 +
∑
i

βixi +
∑
i≤j

βijxixj +
∑
i≤j≤k

βijkxixjxk + . . . . (8.3)

For m samples, we can write Eq. 8.3 as a linear function f(xxx) = XT · βββ, where

XT =


1 x

(1)
1 . . . x

(1)
n x

(1)
1 x

(1)
2 . . .

...
. . .

1 x
(m)
1 . . . x

(m)
n x

(m)
1 x

(m)
2 . . .

 , (8.4)

and βββT = (β0, β1, . . . , βn, β12, . . . ). In the machine learning language this is equivalent to

applying features transformation to the input vectors. If the vector xxx is binary, the infinite

series reduces into a finite series with 2n terms. Symmetries and locality will further

reduce number of β with nonzero values. For instance, in Ising and tight-binding models

interactions are usually considered up to the first or second nearest neighbors. Moreover

most physical systems, under certain conditions or constraints, can be described by a low

order polynomial, usually less than a degree of four. We will start by approximating the

objective function with a polynomial function.

Since there is no theory that tells us the degree of the complexity, we will increase

the degree of polynomial until a reasonable performance accuracy is achieved. We use the

ordinary least squares (OLS) regression to describe the yield stress as a function of xxx. For

this regression model we use the 15 long array that distinguishes between cut and no cut

in each grid as the input vector xxx and set the value of each component to be ‘1’ for no-cut

and ‘-1’ for cut.

Out of 215 possible configurations, only the 29,791 non-detached configurations are

considered. We find the non-detached configurations, where non-detached means that

there is no cut that traverses the entire length (in the y-direction) of the kirigami. We

randomly shuffle the 29,791 data samples, and use 80% for training, 10% for validation,

and 10% for the test set. To quantify the performance of a model we use R2 score on the
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(a) 

(b) 

Figure 8.5: (a) Learned first order parameter βi plotted in 2D arrays to match with
the real space positions for yield strain. Here (1,1) is β1, (1, 2) is β2 and so on. (b)
Learned matrix second order parameters (coupling interactions) βij for yield strain.

test set given by

R2 = 1−
∑mtest

i=1 |yitest − yipred|2∑mtest
i=1 |yitest − 1

mtest

∑mtest
i=1 yipred|2

, (8.5)

where mtest is the number of test set, ytest are the true values (obtained from MD) from

the test set, and ypred are the predicted values from the model. Since we simulate MD

at T = 4.2 K there will be stochasticity (non-deterministic) and thus the MD simulation

results have irreducible error. The fundamental MD accuracy (irreducible error) ησ(ε)

can be approximated as root mean squared deviations (RMSD) of σy (εy) obtained from

different initial conditions, which in this case are the initial velocities. η is generally larger

for systems with more cuts. For yield strain, a polynomial of degree 3 gives R2 = 0.76 and

RMSE = 0.084; for yield stress, a polynomial of degree 2 gives R2 = 0.93 and root mean

square error RMSE = 4.1 GPa. The plots are shown in fig. 8.4. We see that even with a

simple ML model we can get RMSE that is close to the MD accuracy.

To gain a physical understanding of how the kirigami should be designed we plot the

values of the parameters β. The first order parameters βi are negative, suggesting that

yield strains will be higher when the materials have more cuts, as shown in fig. 8.5(b).

The second order parameters βij represent the pairwise ‘interaction coupling’, and these
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(a) 
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Figure 8.6: (a) Learned first order parameter βi plotted in 2D arrays to match with
the real space positions for yield stress. Here (1,1) is β1, (1, 2) is β2 and so on. (b)
Learned matrix second order parameters (coupling interactions) βij for yield stress.

give better insights on how the kirigami should be designed in order to achieve high yield

strains. From fig. 8.5(c), we see that the values βij are lowest (most negative) between

two neighbors along the ~x direction. On the other hand the coupling is positive between

two neighbors along ~y. For instance β12 = 0.01 while β16 = −0.02. The regression results

suggest that to achieve a high yield strain, cells (with a cut or no cut) of same type

should be placed long the ŷ, while the opposite type should be placed right next to each

other in the x̂. This means the kirigami should have a line of cuts in ŷ that alternate in

the x̂ direction. This resembles mechanical springs with two different constants that are

connected in series. Overall, the first order parameters βi tell us that increasing cut density

will result in higher strains; the second order parameters βij gives further design principles

on how the cuts should be arranged.

As shown in fig. 8.6(a), all first order parameters βi for yield stress are positive, sug-

gesting that introducing cuts will lower the yield stress. From fig. 8.6(b), we see that

the values are lowest (most negative) between two neighbors along the ~y direction. On the

other hand the coupling is positive between two neighbors along ~x. For instance β12 = −1.5

while β16 = +1.5. The regression results suggest that kirigami should have arrays of cuts
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(or no cuts) in x̂ that alternate in the ŷ direction. This resembles mechanical springs with

two different constants that are connected in parallel. In contrast to nearest neighbor βij

of the yield strain, the nearest neighbor for yield strain is positive βij > 0 along x̂ while

βij < 0 when the j element is not in the same ŷ.

8.7 Model complexity and larger systems

We want to note that using series expansion and OLS works reasonably well for this simplest

system; however, for finer grids (or larger systems), the number of parameters will increase

significantly as there will be (n+ d)!/(n!d!) ∼ nd/d of h terms, where d is the polynomial

degree, n is number of grids (features). If we use one rectangular graphene unit cell as the

size of one grid. Then, for a system size ∼ 100× 200 Å, there will be 30× 80 grids (10× 16

rectangular graphene cells in each coarse grid). At a polynomial degree of 3, we will need

∼ 109 parameters to fit. This series expansion approach is computationally inefficient as

we know from previous analysis that the close neighbors are the defining factors.

Gu et al. found that a very low training density 1−12% of total possible configurations is

needed to train a linear ML model to find good materials candidates in composite materials

with a pre crack based on FEM [187]. However, the work did not explain why such a low

data density can train the ML. We argue that number of data needed to train does not grow

exponentially with system size (possible configurations 2n). Instead it scales with model

complexity which is roughly proportional to number of parameters in the model. And

because of locality, number complexity should scale C×n instead of (n+d)!/(n!d!) ∼ nd/d,

where C is some number. Of course one can do series expansion to nearest neighbors

only, but in practice we often do not have prior knowledge regarding the locality of the

interactions. We also want to note that the locality here does not necessarily mean a

close distance in the real space. For example, there could a strong interaction between an

element on one side of the membrane to the one on the opposite side, as exemplified by βij

of yield strain.
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In the series expansion approach, the 2D cut patterns are flattened into a 1D-array and

thus some of the local spatial information are lost. Series expansion can be used to ‘recover’

the information of interactions between neighbors, but this approach becomes inefficient

when the number of cells becomes large. This series expansion approach is computationally

inefficient as we expect the interactions should be local. It has been known that neural

networks (NN) can approximate any arbitrary functions [201, 202]. NN, however, still does

not take advantage of locality as it builds connections for all elements. For these reasons,

the convolutional neural network (CNN) is a more appropriate and scalable model as this

deep learning is superior in recognizing edges in 2D motifs as well as performing down-

sampling, which is very suitable for our problem. In the CNN, the 2D image (input) is

convolved by a set of learnable filters and this allows the model to learn 2D motifs. An

image passing through these filters then activates neurons which then classify (or rank) the

cutting patterns to good or bad designs. This approach is more efficient than the series

expansion approach as the CNN model is built based on learned 2D local motifs.

8.8 Convolutional Neural Networks

We train NNs and CNNs to predict the yield strain in the context of supervised learning.

2D images of size 30 × 80 are used as inputs for training the CNN. For the NN, the 2D

images are flattened to 1D arrays of size 2400. The 2400 grids correspond to the number

of rectangular graphene unit cells. In vision tasks CNN is usually used for classification.

Here, we will use both NN and CNN for regression. Accordingly, we do not include the

activation function at the end of the final layer, and we minimize the mean squared error

loss to optimize the model parameters.

Since the yield strain and yield stress results are similar as they are roughly inversely

proportional to each other (see fig. 6.2(b)), we will focus on the yield strain. Out of 215

possible configurations, only the 29,791 non-detached configurations are considered. We

find the non-detached configurations, where non-detached means that there is no cut that
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Figure 8.7: R2 and RMSE for yield strain (a, b) and yield stress (c, d) as a function
of number of neurons for NN or size of fully-connected layer for CNN for different
number of grids. In general, an increasing number of neurons increases the model
accuracy. It can be seen that the CNN models outperform the NN models.

traverses the entire length (in the y-direction) of the kirigami. We randomly shuffle the

29,791 data samples, and use 80% for training, 10% for validation, and 10% for the test

set. We perform several shuffles and find that all performances are similar (with CNN-f16-

f32-f64-h64 model). In addition, we perform 9-fold cross-validation and obtain an average

accuracy on the test set of 0.918 with a standard deviation of 0.002. The validation dataset

is used to find better architectures (“hyperparameter tuning”, i.e. changing number of

neurons or filters), and the test dataset is used to assess performance.

We use simple shallow NNs with one hidden layer of size ranging from 4 and 2024. For
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CNN, we use architectures similar to VGGNet [203]. The kernel size is fixed at 3×3 with a

stride of 1. Each convolutional layer is followed by a rectified linear unit (ReLU) function

and a max-pooling layer of size 2×2 with stride of 2 [61]. The same padding was used after

the first convolutional layer to preserve the image size. We included one fully-connected

layer of size ranging from 4 to 2024. As we performed regression, we did not include the

ReLU function at the end of the final layer. The Adam optimizer was used to minimized

the mean squared error.

We use the root-mean-square error (RMSE) and R2 on the test set to evaluate the

goodness of a model. A CNN with number of filters of 16, 32, 64 in first, second, and third

convolutional layer, respectively, and a fully-connected layer (FCL) of size 64 achieves

R2 = 0.92 and RMSE of 0.053 which is close to the MD precision of 0.046. We will denote

this CNN model by CNN-f16-f32-f64-h64; here ‘f’ stands for filter and ‘h’ stands for number

of neurons in the FCL. A NN with 64 neurons achieves R2 = 0.84 and RMSE of 0.075. A

NN with 246 neurons achieves a RMSE of 0.123 and CNN with 256 FCL achieves a RMSE

of 0.054.

In each model, the R2 of the training dataset is slightly larger than the validation or

test dataset, indicating that there is no overfitting problem. For instance, for CNN-f16-f32-

f64-h64 the R2 are 0.94, 0.91, 0.92, on training, validation, and test dataset respectively.

The RMSE are 0.045, 0.055, 0.053 on training, validation, and test dataset respectively.

We found that the deep CNN architecture with increasing number of filters from 16 to

64, similar to VGGNet architecture [203], performed the best compared to the wide CNN

architectures or wide NNs. The performance comparison on the validation dataset is shown

in fig. 8.7. In addition, we also include performance comparison for yield stress shown in

fig. 8.7(c) and (d). Fig. 8.8 shows the CNN-f16-f32-f64-h64 fitness in predicting yield strain

and yield stress on the test datasets. Previously we found that for yield strain, OLS with

a polynomial degree of 3 gives R2 = 0.76 and RMSE = 0.084. Overall we found that the

CNN performs better than NN and OLS as the CNN learns from the local 2D patterns.
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Figure 8.8: Plot of true values (test dataset) as a function of predicted value for (a)
yield strain and (b) yield stress. Here, the CNN-f16-f32-f64-h64 model was used.
The red line represents y = x line.

8.9 Inverse Design of Highly Stretchable Kirigami

In the previous section, we used NN and CNN for the prediction of mechanical properties,

in the context of supervised learning. Next, we investigate if the approximated function

can be used to search for optimal designs. Here, we will use CNN, the best performing

model, to search for the cut configuration with the largest yield strain. The procedure

is as follows: first we randomly choose 100 configurations from the library of all possible

configurations and use MD to obtain the yield strain. After training, the CNN then is used

to screen the unexplored data set for the top performing 100 remaining candidates. Based
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Figure 8.9: Schematic of the neural network search algorithm.

on this screening, 100 new MD simulations are performed and the results are added to

the training set for the next generation. The ML search algorithm flow diagram is shown

in fig. 6.5(a). The difference from the previous section is that here we train the model

incrementally with the predicted top performers.

We first use the 3× 5 allowed cuts where we already have simulated all of the possible

configurations in MD to make sure that our model indeed finds the true (or close to) optimal

designs. To evaluate the performance of the search algorithm we use the average of yield

strain of the top 100 performers εy
top100 for each generation. This number, which cannot be

too small, is chosen arbitrarily so that we obtain more than a handful of good candidates.

As a benchmark, we include the ‘naive’ random search. Specifically, we use CNN-f16-f32-

f64-h64 architecture to find the optimal designs. As shown in fig. 8.10(a), the random search

needs 30 generations (3000 MD simulations) to get εy
top100 ≥ 1.0 (100%strain) and explore

the entire design space in order to find the true best 100 performers. The CNN approach

requires only 3 generations (300 MD simulations data) to search for 100 candidates with
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εytop100 ∼ 1.0 and 10 generations to search the true top 100 performers. In each generation

the standard deviation of εytop100 is around 0.25. Using CNN to search for optimal designs

is crucial because one MD simulation of graphene with a size of 100×200 Å requires around

1 hour computing time using 4 cores of CPU. In each generation, the required time to train

the CNN and to predict the yield strain of one configuration is around 6 milliseconds on

4 CPU cores (same machines) or 3 milliseconds on 4 CPU cores plus one GPU. From

fig. 6.2(b), we know that sheets with high strains are ones with high cut density. However,

the variability is also large; for example at 11/15 cut density, the yield strain ranges from

0.2 to 1.7. Despite of this complexity, the ML quickly learns to find solutions at high cut

density and also to find the right cutting patterns.

Next, we apply this simple algorithm to a much larger design space where the true

optimal designs are unknown and also with a specified design constraint. Specifically, we

study larger graphene sheets by extending the physical size in x̂ from ∼ 100 × 200 to

∼ 200× 200 Å (from 30× 80 to 50× 80 rectangular graphene unit cells). For this system,

one MD simulation requires around 3 hours of computing time running on 4 cores. The

allowed cuts are also expanded from 3×5 to 5×5 grids. For this problem, we fixed number

of cuts at 11 cuts, which gives a design space of size 25!
11!14! ∼ 4 × 106. For this system,

we could not use brute force to simulate all configurations as we did previously for system

with 15 allowed cuts. While the typical stretchable kirigamis usually have cuts and no-cuts

along the loading direction (x̂), it is not clear whether all the cuts should be located closely

in a region or distributed equally.

As shown in fig. 8.10(b), the CNN is able to find designs with higher yield strains. With

fewer than 10 generations (1000 training data), the CNN is able to find configurations with

yield strains ≥ 1.0, which is roughly five times larger than a sheet without cuts. In each

generation, the standard deviation of the top 100 performers is around 0.1. In fig. 8.11(a),

we plot cut configurations of the top five performers in each generation. It can be seen

that the cut configurations are random in the early stage of the search but evolve quickly

to configurations with a long cut along the ŷ direction alternating in x̂ direction, as we
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Figure 8.10: Average yield strains of the top 100 performers as a function of gener-
ations for kirigami with allowed cuts of (a) 3× 5 and (b) 5× 5.

expected from the smaller grid system. This suggests that our ML approach is scalable

in a sense that the same CNN architecture used previously in the simpler system with 15

allowed cuts can search the optimal designs effectively despite a large design space.

We next take a closer look on the top performing configurations. Interestingly, the

optimal solutions for maximum stretchability found by CNN have cuts at the edges which

are different from the “typical” kirigami with centering cuts (fig. 8.11(b) configuration I).

The found best performer has a yield strain twice as large as the kirigami with centering

cuts. We found that to achieve high yield strains the long cuts should be located close

to each other, rather than being sparsely or equally distributed across the sheet along
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Figure 8.11: (a) Visualization of top five performers of kirigami with 5× 5 allowed
cuts in each generation. After the ninth generation, the top three performers remain
constant. (b) A comparison between the top performing configurations found by
the ML and the typical kirigami configurations with centering cuts. Note that the
kirigami visualizations are not scaled to the real physical dimensions for clarity.

the x̂ direction, as shown by comparing configurations II and III in fig. 8.11(b). These

overlapping cut configurations allow larger rotations and out-of-plane deflection which give

higher stretchability, i.e. the alternating edge cut pattern effectively transforms the 2D

membrane to a quasi-1D membrane. Close packing of the alternating edge cuts allows

increased stretchability because the thinner ribbons connecting different segments improve

twisting. This result is similar to what we found previously in kirigami with centering

cuts [155, 169].
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8.10 Rotations in kirigami
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Figure 8.12: Top and side views of three representative kirigamis.

Here we investigate the mechanisms enabling high stretchability, and focus on rotation

mechanisms in a few kirigami structures as shown in fig. 8.12. First we compare a kirigami

with typical centering cuts (fig. 8.12 I) and a kirigami with alternating edge cuts (fig. 8.12

II).

Let the dimension of one cut be cx × cy. We denote the “meeting point” in the middle

segment where two ribbons are connected as a node, which are denoted by circles in fig. 8.12.

Assuming there is no bond breaking, configuration I will have a maximum extension of

≈ 3cx where the ribbons are connected by two nodes, whereas configuration II will have a

maximum extension ≈ 7cx as the ribbon is connected by one node. This additional degree

of freedom (one fewer connecting node) enables configuration II to experience significantly

more elastic stretching as compared to configuration I. As mentioned in the main text,

the ML indeed found that the yield strain of configuration II is almost twice as large

that of configuration I, as the alternating edge cut pattern effectively transforms the 2D

membrane to quasi-1D membrane. We want to note that the kirigamis indeed buckle in

the out-of-plane direction (see fig. 8.13), which is they key to prevent breaking.
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Figure 8.13: Side view of graphene kirigami structure I and II during stretching. It
can be seen that the kirigamis buckled in the out-of-plane direction.

An additional consideration is how the closeness of the alternating edge cuts impacts

the elastic stretchability. As can be seen by comparing configurations II and III in fig. 8.12,

close packing of the alternating edge cuts allows increased stretchability. This is because,

as seen from the side view, the ribbons need to rotate (twist) due to the applied tensile

loading. Because the cuts are sparse in configuration III, the ribbons around the nodes are

thick. In configuration II, the ribbons are thinner, which improves twisting and increases

stretchability from 1.10 to 1.68.

This design principle is particularly useful as recently a combination of dense and

sparse cut spacing were used to design stretchable thin electronic membranes [204]. It

is remarkable not only that ML can quickly find the optimal designs using few training

data (< 1% of the design space) under certain constraints, but also that ML can capture

uncommon physical insights needed to produce the optimal designs, in this case related to

the cut density and locations of the cuts.

8.11 Summary

We have shown how machine learning (ML) methods can be used to design graphene

kirigami, where yield strain and stress are used as the target properties. We found that
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CNN with three convolutional layers followed by one fully-connected layer is sufficient to

find the optimal designs with relatively few training data. Our work shows not only how

to use ML to effectively search for optimal designs but also to give new understanding

on how kirigami cuts change the mechanical properties of graphene sheets. Furthermore,

the ML method is parameter-free, in a sense that it can be used to design any material

without any prior physical knowledge of the system. As the ML method only needs data,

it can be applied to experimental work where the physical model is not known and cannot

be simulated by MD or other simulation methods. Based on previous work indicating the

scale-invariance of kirigami deformation [175], the kirigami structures found here using ML

should also be applicable for designing larger macroscale kirigami structures.
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Chapter 9

Concluding Remarks

In this thesis, we have used different computational techniques, developed tight-binding

and continuum models, and introduced machine learning approaches to study and design

2D materials beyond graphene.

In the first half of this thesis, we focused on studies of 2D materials beyond graphene via

density functional theory (DFT). We discovered novel effects such as valley and polarization

switching in monochalcogenide monolayers and orbital-spin switching in lead chalcogenide

monolayers. Tunable properties (e.g. spin and valley polarization) can be controlled by

breaking the inversion symmetry via buckling or puckering. As the spin and valley states

are dictated by the crystal symmetry, we proposed to utilize these new materials for devel-

oping non-volatile memories [32]. Very recently, accessing valley polarization with linearly

polarized in SnS has been realized experimentally [62]. A further experimental realization

of incorporating strain or electric control to change the symmetry for switching the valley

polarization would be important for developing strain based valleytronic devices.

Recently, the Rashba effect has been observed in thin layers (6–20 nm) of lead sulfide

(PbS) [128], where an external electric field is used to break the inversion symmetry. Our

theoretical studies suggest that the buckled structure is the stable phase of PbS mono-

layer [35]. Applications of in-plane or out-of-plane strains should change the strength of

Rashba coupling as well as to invert the direction of polarization. The switchable electric

polarization and spin-texture is crucial to develop next-generation non-volatile spintronics.

We discussed some limitations of DFT for studying 2D materials with inhomogeneities
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due to local strains or defects. Molecular dynamics (MD) are far more time efficient for

calculating the structural changes; this method, however, does not calculate electronic

properties as MD are classical simulations. We further developed a tight-binding (TB)

approach to describe the electronic changes in heavy atoms in a square lattice. Even with a

simple TB model, we were able to capture many novel properties, such as spin-polarization,

which were consistent with the DFT results.

A further development of the TB model was carried out to incorporate strain effects.

We found a direct relationship between spontaneous polarizations and the Rasha fields,

which is not well understood for ferroelectric Rashba materials [205]. We find that the

strains induce gauge fields in the low-order energy Hamiltonian near the symmetry points.

The fields shifts the Rashba point and modify the Rashba parameter, which is equivalent to

applications of in-plane magnetic fields by minimal coupling substitution. We found that

applying 2% in-plane strains is equivalent to application of a 600 Tesla magnetic field. This

opens the possibility to study chiral electrons in an extremely large pseudo magnetic field,

which cannot be achieved in a laboratory setting. The out-of-plane strain, which is roughly

proportional to the electric polarization, is also shown to modify the Rashba parameter.

In particular the strain and electrical control of the Rashba effect is of practical interest

because it allows the manipulation of spin states using electric fields (or strains) rather than

magnetic fields. The buckling atoms can be used to write memory as each domain will

have different spin-texture. Several experimental works use out-of-plane magnetic fields

(parallel to the polar axis of Rashba materials) to measure the Rashba parameter as the

Landau level spectrum changes with the strength of the Rashba parameter [99, 131]. One

could also use this experimental approach to detect variations in the Rashba parameter

in PbX due to out-of-plane strains. Overall our theory provides a new understanding on

the connection between ferroelectricity and Rashba fields in ferroelectric Rashba materials

and an alternative approach (i.e. the usage of TB with atomistic simulations) to study the

variations of Rashba parameters due to inhomogeneous strains that will occur in practical

applications. Our results are important to a broad range of research communities that
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study spin, ferroelectricity, or band engineering in 2D systems.

In the second part of the thesis, we focused on changing mechanical properties of 2D

materials using geometrical cuts, known as kirigami. We found that the tensile yield can be

improved by a factor of four compared to pristine MoS2 nanoribbons. In other studies [175],

we showed that there is a universal relationship between the maximum buckling height and

fracture strain in thin sheets from macro to nanoscales. These results in conjunction with

recent results on other systems suggest that the kirigami approach may be a generally

useful one for enhancing the ductility of two-dimensional materials.

Lastly, we introduced a machine learning (ML) approach for structural topology opti-

mization in 2D materials. We showed that convolutional neural networks (CNN) are able

to predict material properties close to the ground truth accuracy level, which is obtained

from MD simulations [206]. Our work is the first demonstration of the applicability of ML

to predict stretchability in graphene kirigami. We then showed how the CNN can be used

for search algorithm. The algorithm is able to search for the optimal solutions with only

1000 training data in a large design space of 4,000,000. The solutions have non-symmetric

cuts, which are different from the typical kirigami cuts. Importantly, the ML methods we

used can learn from a small amount of data to generate superior designs that outperform

their predecessors (similar to an evolutionary process). Designing micron-size kirigami (ac-

tuators) that are flexible and can actuate is important for developing micron-size biosensors

and surgical robots [207, 208, 209].

The ML approaches should also be applicable for optimizing other properties (e.g.

electronic and thermal properties). One of the great advantages of ML is that the it can

learn from data only without knowing any physical principles.This means that ML can be

applied to “raw” experimental data, such as images of atoms, spatial local density of states,

and so on. We do believe however that, when available, any known physical intuitions and

knowledge should be incorporated to the model. We also want to note that while deep

neural networks (e.g. CNN) have shown to be a powerful tool, one of the limitations is that

deep neural networks are often not easy to interpret compared to simpler ones (e.g. linear
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models). Interpretability and transparency are central when deploying deep learning for

any kind of systems. Moreover, to study physical systems, while attaining good prediction

is important, understanding remains the ultimate goal.

Lastly, while applications of ML to materials are currently the most vibrant ongoing

research, from predicting properties and rapid discoveries [210, 211, 212] to developing neu-

ral network potentials [188, 189, 213, 214], there are still very few efforts on comparing the

time performance and accuracy of ML and to that of more traditional optimization tech-

niques, such as genetic algorithms and topology optimization algorithms. This comparison

is less straight forward because most of modern ML algorithms (in particular deep learn-

ing) exploit parallel and GPU computing while the conventional optimization techniques

may not always have such tools in hand.

Despite these challenges, we are fortunate that both current computational and exper-

imental techniques are complimenting each other, by providing theoretical frameworks and

physical realizations of new 2D materials. This together will provide us a better under-

standing of yet to be explored many intriguing physical phenomena in 2D playground, as

Feyman nicely put it “What I cannot create, I do not understand.”
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Appendix A

Input Files for Simulations

Here we provide some examples of input Quantum Espresso (QE) files. Most of the pseu-

dopotentials can be found in https://www.quantum-espresso.org/pseudopotentials.

We recomend to perform lattice relaxations before calculating the band structure. We want

to note that the input files provided here are served as examples. All actual values used in

simulations can be found in our papers.

A.0.1 QE Input Files for SnS

A.0.1.1 Self Consistent Calculation

&CONTROL

calculation = ’scf’,

restart_mode = ’from_scratch’,

wf_collect = .true.

verbosity = ’high’

pseudo_dir=’/project/frgeeeph/twodmaterial/pseudo’

/

&SYSTEM

ibrav=8,

celldm(1)=7.948807836,

celldm(2)=0.9728322218,

celldm(3)=5.923255237,

nat=4,

ntyp=2,

ecutwfc=70.0,

occupations=’smearing’,

smearing=’gaussian’,

degauss=0.020000,

nbnd=30

/

&ELECTRONS

electron_maxstep = 100,

conv_thr = 1.0e-8,

https://www.quantum-espresso.org/pseudopotentials
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mixing_beta = 0.5,

/

&IONS

/

&cell

cell_dynamics=’bfgs’

cell_factor=3

press_conv_thr=0.1

/

ATOMIC_SPECIES

Sn 1.0 Sn.pbe-mt_fhi.UPF

S 1.0 S.pbe-mt_fhi.UPF

ATOMIC_POSITIONS crystal

Sn -0.25 -0.25 0.055

S 0.19 0.25 0.065

Sn 0.25 0.25 0.168

S -0.31 -0.25 0.158

K_POINTS automatic

10 10 1 0 0 0

To perform lattice relaxation change ‘scf’ to ‘vc-relax’.

A.0.1.2 Band Structure Calculation

&CONTROL

calculation = ’bands’,

wf_collect = .true.

verbosity = ’high’

pseudo_dir=’/project/frgeeeph/twodmaterial/pseudo’

/

&SYSTEM

ibrav=8,

celldm(1)=7.948807836,

celldm(2)=0.9728322218,

celldm(3)=5.923255237,

nat=4,

ntyp=2,

ecutwfc=70.0,

occupations=’smearing’,

smearing=’gaussian’,

degauss=0.020000,

nbnd=30

/

&ELECTRONS

electron_maxstep = 100,

conv_thr = 1.0e-8,

mixing_beta = 0.5,

/

&IONS

/

&cell

cell_dynamics=’bfgs’
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cell_factor=3

/

ATOMIC_SPECIES

Sn 1.0 Sn.pbe-mt_fhi.UPF

S 1.0 S.pbe-mt_fhi.UPF

ATOMIC_POSITIONS crystal

Sn -0.25 -0.25 0.055

S 0.19 0.25 0.065

Sn 0.25 0.25 0.168

S -0.31 -0.25 0.158

K_POINTS crystal_b

5

0.5 0.0 0.0 20

0.0 0.0 0.0 20

0.0 0.5 0.0 20

0.5 0.5 0.0 20

0.5 0.0 0.0 20

We use k-points with a path along the symmetry points.

A.0.2 QE Input Files for GeSe

A.0.2.1 Self Consistent Calculation

&CONTROL

calculation = ’scf’,

restart_mode = ’from_scratch’,

wf_collect = .true.

verbosity = ’high’

pseudo_dir=’/project/frgeeeph/twodmaterial/pseudo’

/

&SYSTEM

ibrav=8,

celldm(1)=8.032405556,

celldm(2)=0.937622153,

celldm(3)=5.839251938,

nat=4,

ntyp=2,

ecutwfc=70.0,

occupations=’smearing’,

smearing=’gaussian’,

degauss=0.020000,

nbnd=30

/

&ELECTRONS

electron_maxstep = 100,

conv_thr = 1.0e-8,

mixing_beta = 0.5,

/

&IONS

/
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&cell

cell_dynamics=’bfgs’

cell_factor=3

press_conv_thr=0.1

/

ATOMIC_SPECIES

Ge 1.0 Ge.pbe-mt_fhi.UPF

Se 1.0 Se.pbe-mt_fhi.UPF

ATOMIC_POSITIONS crystal

Ge -0.25 0.25 0.06

Se 0.17 -0.25 0.055

Ge 0.25 -0.25 0.155

Se -0.33 0.25 0.16

K_POINTS automatic

10 10 1 0 0 0

A.0.2.2 Band Structure Calculation

&CONTROL

calculation = ’bands’,

wf_collect = .true.

verbosity = ’high’

pseudo_dir=’/project/frgeeeph/twodmaterial/pseudo’

/

&SYSTEM

ibrav=8,

celldm(1)=8.032405556,

celldm(2)=0.937622153,

celldm(3)=5.839251938,

nat=4,

ntyp=2,

ecutwfc=70.0,

occupations=’smearing’,

smearing=’gaussian’,

degauss=0.020000,

nbnd=30

/

&ELECTRONS

electron_maxstep = 100,

conv_thr = 1.0e-8,

mixing_beta = 0.5,

/

&IONS

/

&cell

cell_dynamics=’bfgs’

cell_factor=3

/

ATOMIC_SPECIES

Ge 1.0 Ge.pbe-mt_fhi.UPF

Se 1.0 Se.pbe-mt_fhi.UPF

ATOMIC_POSITIONS crystal
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Ge -0.25 0.25 0.06

Se 0.17 -0.25 0.055

Ge 0.25 -0.25 0.155

Se -0.33 0.25 0.16

K_POINTS crystal_b

5

0.5 0.0 0.0 20

0.0 0.0 0.0 20

0.0 0.5 0.0 20

0.5 0.5 0.0 20

0.5 0.0 0.0 20

A.0.3 QE Input Files for PbS

A.0.3.1 Self Consistent Calculation with Spin Orbit Interaction

&CONTROL

calculation = ’scf’,

restart_mode = ’from_scratch’,

wf_collect = .true.

tprnfor = .true.,

pseudo_dir=’/project/frgeeeph/twodmaterial/pseudo/rel-pbe.0.3.1/PSEUDOPOTENTIALS’

/

&SYSTEM

ibrav=8,

celldm(1)=7.060076352,

celldm(2)=1,

celldm(3)=5.546759341,

nat=2,

ntyp=2,

ecutwfc=100.0,

ecutrho=200,

nosym=.false.,

nbnd = 80,

occupations = ’smearing’ ,

degauss = 0.01 ,

smearing = ’gaussian’ ,

starting_magnetization(1) = 0.5,

starting_magnetization(2) = 0.2,

noncolin = .true. ,

angle1(1) = 30,

angle1(2) = 45,

angle2(1) = 30,

angle2(2) = 45,

lspinorb = .true. ,

london = .false. ,

/

&ELECTRONS

electron_maxstep = 100,

conv_thr = 1.0e-8,

mixing_beta = 0.5,

/
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&IONS

/

&cell

cell_dynamics=’bfgs’

cell_factor=3

/

ATOMIC_SPECIES

Pb 1.0 Pb.rel-pbe-dn-kjpaw_psl.0.2.2.UPF

S 1.0 S.rel-pbe-n-kjpaw_psl.0.1.UPF

ATOMIC_POSITIONS crystal

Pb 0.5 0.5 0.193

S 0.0 0.0 0.143

K_POINTS automatic

16 16 1 0 0 0

A.0.3.2 Band Structure Calculation with Spin Orbit Interaction

Similarly to other band structure calculations, simply replace ‘scf’ to ‘bands’ and
change the k-points to

5

0.5 0.0 0.0 50

0.0 0.0 0.0 50

0.0 0.5 0.0 50

0.5 0.5 0.0 50

0.5 0.0 0.0 50

A.0.4 LAMMPS Input File and Machine Learning Model for Graphene

Kirigami

Codes to generate atomic configurations and machine learning models (scikit-learn

and TensorFlow) can be found in https://github.com/phanakata/ML_for_kirigami_

design.

https://github.com/phanakata/ML_for_kirigami_design
https://github.com/phanakata/ML_for_kirigami_design
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Rodin, Ĺıdia Carvalho, Emory M Chan, Xi Wang, Antonio H Castro Neto, et al.
Accessing valley degree of freedom in bulk tin (ii) sulfide at room temperature. Nature
Communications, 9(1):1455, 2018.

[63] Q H Wang, K Kalantar-Zadeh, A Kis, J N Coleman, and M S Strano. Electron-
ics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature
Nanotechnology, 7:699–712, 2012.

[64] P Johari and V B Shenoy. Tuning the electronic properties of semiconducting tran-
sition metal dichalcogenides by applying mechanical strains. ACS Nano, 6(6):5449–
5456, 2012.

[65] M Chhowalla, H S Shin, G Eda, L-J Li, K P Loh, and H Zhang. The chemistry of two-
dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry,
5:263–275, 2013.

[66] Di Xiao, Gui-Bin Liu, Wanxiang Feng, Xiaodong Xu, and Wang Yao. Coupled spin
and valley physics in monolayers of mos2 and other group-vi dichalcogenides. Physical
Review Letters, 108:196802, May 2012.

[67] Edbert J Sie, James W McIver, Yi-Hsien Lee, Liang Fu, Jing Kong, and Nuh Gedik.
Valley-selective optical stark effect in monolayer ws2. Nature Materials, 14(3):290–
294, 2014.

[68] Jonghwan Kim, Xiaoping Hong, Chenhao Jin, Su-Fei Shi, Chih-Yuan S. Chang,
Ming-Hui Chiu, Lain-Jong Li, and Feng Wang. Ultrafast generation of pseudo-
magnetic field for valley excitons in wse2 monolayers. Science, 346(6214):1205–1208,
2014.

[69] M. Sepioni, R. R. Nair, S. Rablen, J. Narayanan, F. Tuna, R. Winpenny, A. K. Geim,
and I. V. Grigorieva. Limits on intrinsic magnetism in graphene. Physical Review
Letters, 105:207205, Nov 2010.

[70] Emil B Song, Bob Lian, Sung Min Kim, Sejoon Lee, Tien-Kan Chung, Minsheng
Wang, Caifu Zeng, Guangyu Xu, Kin Wong, Yi Zhou, et al. Robust bi-stable memory
operation in single-layer graphene ferroelectric memory. Applied Physics Letters,
99(4):042109, 2011.

[71] Yi Zheng, Guang-Xin Ni, Chee-Tat Toh, Chin-Yaw Tan, Kui Yao, and Barbaros
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[124] H Hugo Pérez Garza, Eric W Kievit, Grégory F Schneider, and Urs Staufer. Con-
trolled, reversible, and nondestructive generation of uniaxial extreme strains (¿ 10%)
in graphene. Nano Letters, 14(7):4107–4113, 2014.

[125] Qihang Liu, Yuzheng Guo, and Arthur J. Freeman. Tunable rashba effect in two-
dimensional laobis2 films: Ultrathin candidates for spin field effect transistors. Nano
Letters, 13(11):5264–5270, 2013.

[126] Domenico Di Sante, Paolo Barone, Riccardo Bertacco, and Silvia Picozzi. Electric
control of the giant rashba effect in bulk gete. Advanced Materials, 25(4):509–513,
2013.

[127] Andre K Geim and Irina V Grigorieva. Van der waals heterostructures. Nature,
499(7459):419, 2013.

[128] Mohammad Mehdi Ramin Moayed, Thomas Bielewicz, Martin Sebastian Zöllner,
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