List of all publications can be found in my google scholar page
Statistical physics of mechanical metamaterials and thermalized membranes:
[2] P. Z. Hanakata, Abigail Plummer, David R. Nelson, “Anomalous thermal expansion in Ising-like puckered sheets”, Phys. Rev. Lett., 128, 075902 (2022).
Machine learning:
[3] Antonio E. Forte, Paul Z. Hanakata, Lishuai Jin, Emilia Zari, Ahmad Zareei, Matheus C. Fernandes, Laura Sumner, Jonathan Alvarez, Katia Bertoldi, , “Inverse design of inflatable soft membranes through machine learning”, Advanced Functional Materials, 202111610, (2022).
[2] Paul Z. Hanakata, E. D. Cubuk, D. K. Campbell, H.S. Park, “Forward and inverse design of kirigami via supervised autoencoder”, Phys. Rev. Research, 2, 042006(R) (2020).
[1] Paul Z. Hanakata, E. D. Cubuk, D. K. Campbell, H.S. Park, “Accelerated Search and Design of Stretchable Graphene Kirigami Using Machine Learning”, Phys. Rev. Lett., 121, 255304 (2018).
Two-dimensional kirigami and actuators:
[2] Paul Z. Hanakata, Z. Qi, D. K. Campbell, H. S. Park, “Highly stretchable MoS2 kirigami”, Nanoscale, 8, 458 (2016).
[1] M. A. Dias, M. P. McCarron, D. Rayneau-Kirkhope, Paul Z. Hanakata, D. K. Campbell, H. S. Park, D. P. Holmes, “Kirigami actuators”, Soft Matter, 13, 9087 (2017).
Glass transitions and polymer dynamics:
[4] Paul Z. Hanakata, J. F. Douglas, F. W. Starr, “Interfacial mobility scale determines the scale of collective motion and relaxation rate in polymer films”, Nature Communications, 5, 4163 (2014).
[3] Paul Z. Hanakata, B. A. P. Betancourt, J. F. Douglas, F. W. Starr, “A unifying framework to quantify the effects of substrate interactions, stiffness, and roughness on the dynamics of thin supported polymer films”, The Journal of Chem. Phys., 142, 234907 (2015).
[2] B. A. P. Betancourt, Paul Z. Hanakata, J. F. Douglas, F. W. Starr, “Quantitative relations between cooperative motion, emergent elasticity, and free volume in model glass-forming polymer materials”, PNAS, 12, 2966 (2015).
[1] Paul Z. Hanakata, J. F. Douglas, F. W. Starr, “Local variation of fragility and glass transition temperature of ultra-thin supported polymer films”, The Journal of Chem. Phys., 137, 244901 (2012).
Two-dimensional Ferroelectric Rashba semiconductors (FERSCs):
[3] Paul Z. Hanakata, A. S. Rodin, Harold S. Park, David K. Campbell, and A. H. Castro Neto, “Strain-induced gauge and Rashba fields in ferroelectric Rashba lead chalcogenide monolayers PbX monolayers (X=S, Se, Te)”, Phys. Rev. B, 97, 235312 (2018).
[2] Paul Z. Hanakata, A. S. Rodin, Alexandra Carvalho, Harold S. Park, David K. Campbell, and A. H. Castro Neto, “Two-dimensional square buckled Rashba lead chalcogenides”, Phys. Rev. B Rapid, 96, 161401(R) (2017).
[1] A. S. Rodin, Paul Z. Hanakata, Alexandra Carvalho, Harold S. Park, David K. Campbell, and A. H. Castro Neto, “Rashba-like dispersion in buckled square lattices”, Phys. Rev B, 96, 115450 (2017).
Two-dimensional valley and ferroelectric semiconductors (VFESCs):
[1] Paul Z. Hanakata, A. Carvalho, D. K. Campbell, H. S. Park, “Polarization and valley switching in monolayer group-IV monochalcogenides”, Phys. Rev. B, 94, 035304 (2016).
Book chapters:
[2] Paul Z. Hanakata, B. A. Pazmino Betancourt, J. F. Douglas, and F. W. Starr, “Cooperative motion as an organizing principle for understanding relaxation in supported thin polymer films”, Polymer Glasses, 267-296, (2016).
[1] Francis Starr, Paul Z. Hanakata, B. A. Pazmino Betancourt, J. F. Douglas, “Fragility and Cooperative Motion in Polymer Glass Formation”, Fragility of glass forming liquids, 337-361, Edited by A. L. Greer, K. F. Kelton, S. Sastry (Hindustan, New Delhi, India, 2014).